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Figure 1: We showcase the linking and filtering effects of our method in scenes with straight and curly hair. The input is a 1 spp noisy
image. We compare our approach against SMAA, the optix denoiser [NVI25], and Oidn denoising methods [Int21]. Our technique not only
effectively reconstructs broken flyaway strands but also preserves finer details in areas with dense hair.

Abstract

Realistic hair rendering remains a significant challenge in computer graphics due to the intricate microstructure of hair fibers
and their anisotropic scattering properties, which make them highly sensitive to noise. Although recent advancements in image-
space and 3D-space denoising and antialiasing techniques have facilitated real-time rendering in simple scenes, existing meth-
ods still struggle with excessive blurring and artifacts, particularly in fine hair details such as flyaway strands. These issues
arise because current techniques often fail to preserve sub-pixel continuity and lack directional sensitivity in the filtering pro-
cess. To address these limitations, we introduce a novel real-time hair filtering technique that effectively reconstructs fine fiber
details while suppressing noise. Our method improves visual quality by maintaining strand-level details and ensuring computa-
tional efficiency, making it well-suited for real-time applications in video games and virtual reality (VR) and augmented reality
(AR) environments.
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1. Introduction

Hair plays a critical role in the perceptual fidelity of virtual charac-
ters in real-time rendering applications. However, real-time render-
ing of hair remains a fundamental challenge in computer graph-
ics. Due to the complex interplay of high-frequency geometry
and intricate light transport, hair fibers exhibit fine-scale structures
and anisotropic scattering, which makes Monte Carlo path tracing
highly susceptible to noise. Although recent advances in denoising
techniques [V*18, Cor25a, MZV*20, Cor25b, Cor24] have enabled
some level of real-time performance, existing approaches often suf-
fer from excessive blurring and perceptual artifacts. In particular,
fine strands, especially flyaway fibers, are prone to fragmentation
or complete loss, severely degrading visual fidelity. Even state-of-
the-art anti-aliasing [Cor25a, KB83] and reconstruction techniques
[WLL*21, TN23] fall short in addressing these challenges, failing
to preserve the fidelity of thin structures under dynamic lighting
and viewpoint changes (Figure 1).

In this work, we introduce a real-time framework designed to
reconstruct strand-level details while effectively suppressing noise
robustly. First, for all pixels that are mistakenly identified as
missed, we select the best candidate strands and extrapolate these
strands to fill these pixels. Then we analyze screen-space informa-
tion and employ an effective pixel coverage approximation scheme
that ensures our results closely approximate the ground truth in an
unbiased manner. Finally, guided by hair-specific geometric priors,
we design a specialized filtering kernel that significantly reduces
noise while successfully preserving fine-grained strand details.

We summarize our contributions as follows:

e Strand Reconstruction via Geometric Extrapolation: We pro-
pose a screen-space reconstruction technique that extrapolates
strand parameters (e.g., tangent direction, ID, and parametric po-
sition) to address the fragmentation and complete loss of fine
strands, so as to maintain structural coherence without relying
on high sampling rate.

¢ Pixel Coverage Estimation: We present an efficient approxima-
tion technique that enables accurate and temporally stable es-
timation of pixel coverage for individual hair strands. Notably,
our method relies solely on information extracted from a 1 sam-
ple per pixel (1 spp) rendering input, making it highly suitable
for real-time applications with limited computational budgets.

e Orientation-Aware Anisotropic Filtering: We design an
elliptical-shaped filtering kernel that jointly considers spatial
proximity, directional alignment, and chromatic similarity, effec-
tively reducing noise while preserving fine strand details.

2. Related Work
2.1. Hair Appearance Modeling

Hair appearance modeling is a complex task in computer graph-
ics, typically divided into two primary areas: modeling individual
hair fibers and simulating the multiple scattering interactions within
hair. The foundation of modern hair rendering was established by
Marschner et al. [MJC*03], who modeled hair fibers as rough di-
electric cylinders and decomposed light interaction into multiple
scattering lobes using angular parameterization. Their work in-
troduced the separation of the bidirectional scattering distribution

function (BSDF) into longitudinal and azimuthal scattering, laying
the groundwork for realistic hair rendering.

Building on this framework, d’Eon et al. [dFH" 11] proposed an
energy-conserving model for hair, refining the physical accuracy of
hair light transport. Yan et al. [YTJR1S5, YJR17] extended this to
fur rendering, incorporating both near-field and far-field scattering
effects to improve realism in hair and fur rendering under dynamic
lighting conditions.

In recent years, research has focused on refining the geometric
and optical properties of hair fibers. Huang et al. [HHH22] intro-
duced a microfacet-based scattering model that more accurately
captures the surface roughness and self-shadowing effects of indi-
vidual hair strands. Benamira et al. [BP21] advanced hair modeling
by combining scattering and diffraction models for elliptical hair
fibers, enabling more precise rendering of anisotropic highlights
and fine-scale details.

For high-density hair and fur rendering in production environ-
ments, Zhu et al. [ZZW*22] developed level-of-detail techniques
for fur aggregation, making the scalable rendering of complex hair
geometry more feasible. These approaches have been particularly
valuable for applications in animation and visual effects.

In the context of real-time rendering, modern approaches aim to
balance physical accuracy with computational constraints. Chiang
et al. [CIL*16] demonstrated a GPU-friendly strand tracing tech-
nique using linear depth peeling, enhancing the efficiency of hair
rendering. Karis [Kar13] introduced screen-space decomposition,
which allows for the integration of multiple scattering in real-time
rendering. Bhokare et al. [BMDY?24] propose a real-time method
for generating and representing individual hair strands with level-
of-detail support, significantly facilitating efficient hair rendering.
Our work extends these concepts with visibility buffer fitting, ad-
dressing sub-pixel discontinuities through parametric propagation,
thereby improving the visual fidelity of real-time hair rendering.

Multiple scattering in hair rendering has been further advanced
by Zinke and Yuksel’s dual scattering framework [ZYWKO8],
which decouples local single scattering from global multiple scat-
tering. Recent innovations have optimized these models using
procedural and data-driven techniques. For instance, Zhu et al.
[ZZW*22] proposed screen-space strand clustering with velocity-
aware level-of-detail (LoD) transitions and mipmapped scattering
kernels to preserve anisotropic appearance. Huang et al. [HZL*24]
proposed a guide-hair-based LoD construction and a screen-space
selection strategy, achieving up to 10x acceleration for strand-
based hair rendering at far view distances while maintaining visual
quality. KT et al. [KJA*23] employed neural networks to predict
high-order scattering components from lower-order terms, effec-
tively mapping scattering hierarchies to improve computational ef-
ficiency.

These works collectively provide the physical and algorithmic
foundations for realistic hair rendering. In particular, accurate mod-
eling of multiple scattering plays a crucial role in noise reduction.
However, due to the sub-pixel scale and high-frequency nature of
hair geometry, practical renderers often face insufficient sampling
rates, leading to severe aliasing and noise. This challenge remains
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a significant bottleneck for real-time hair rendering, and addressing
it forms the core motivation for our approach.

2.2. Hair Filtering and Antialiasing

The refinement of hair image quality in rendering has often drawn
upon techniques from image filtering and anti-aliasing (AA), which
aim to restore fine details while mitigating aliasing artifacts. How-
ever, most filtering and AA algorithms are designed for general im-
age processing and rarely consider the unique properties of hair.
Image denoising and sparse sampling have been actively researched
in rendering, particularly to reduce variance in Monte Carlo render-
ing while preserving fine details. A wide range of filtering meth-
ods has been proposed and systematically categorized into screen
space domains [SZR*15], and path space [KDB16]. Among ex-
isting approaches, we place emphasis on those most relevant to
our method, especially techniques that address sparse sampling and
detail-preserving denoising in real-time rendering.

For real-time rendering, denoising typically employs edge-
preserving filters [BEJM 15, DSHL10], which are effective for thin,
translucent surfaces. However, hair rendering poses a distinct chal-
lenge, as its geometry is inherently composed of edges, leading to
sparse sampling of the scene.

To address the sparse sampling issue, some approaches lever-
age auxiliary features such as positions and normals [GO12], with
machine learning algorithms used to optimize filter parameters
[KBS15]. Bako et al. [BVM™17] adopted convolutional neural net-
works (CNNGs) to learn the optimal filter kernels for offline render-
ing, while Chaitanya et al. [CKS™*17] introduced recursive CNNs
that achieved high-quality denoising for sparse samples in real-
time rendering. Zeng et al. [ZWW*20] propose to use convolu-
tional neural networks with different receptive fields for different
scales of noises.

The only work that directly focuses on hair filtering presented by
Roc R. Currius et al. [CAS22] explored the use of neural networks.
Although promising, this approach introduced additional blurring
and energy variation, and the time required to run a single network
was longer than the rendering time itself.

Alias artifacts caused by insufficient sampling of fine structures,
such as individual hair strands, can be considered a form of un-
resolved subpixel detail, thus falling under the broader challenges
of AA. As demand for high-fidelity real-time rendering increases,
screen-space AA techniques have become a practical alternative
to traditional multisample anti-aliasing (MSAA) [FT20]. Morpho-
logical anti-aliasing (MLAA) [Res09,JME* 18] and its derivatives,
such as FXAA [Lot09], SRAA [CML11] employ post-processing
filters to detect geometric edges and interpolate across them to
suppress aliasing. These methods have become widely adopted
in real-time graphics pipelines due to their balance between vi-
sual quality and performance. However, their effectiveness remains
limited in scenes involving semi-translucent, high-frequency ele-
ments like hair, where aliasing artifacts persist despite edge detec-
tion. Although FXAA integrates real-time hardware optimization,
and SRAA improves edge detection via multi-sample buffers, these
methods often fail to preserve the intricate structure of hair, lead-
ing to blurring or residual aliasing. This limitation underscores the

unique challenges faced in hair rendering, calling for specialized
anti-aliasing techniques. SMAA [JESG12] introduced more pre-
cise pattern detection and temporal feedback, but the problem of
faithfully reconstructing subpixel-level hair geometry remains un-
resolved, particularly under low sampling budgets or oblique view-
ing conditions. Additionally, temporal anti-aliasing (TAA) is fre-
quently employed for both denoising and anti-aliasing [YLS20],
yet it faces complications in hair rendering due to the severely frag-
mented artifacts by fine hair strands, complicating its correspon-
dence with historical buffers.

3. Problem Formulation and Analysis

Rendering high-fidelity hair images requires faithfully capturing all
physically-based shading effects for each individual strand. This is
particularly challenging due to the extremely fine and complex ge-
ometry of hair. A core difficulty lies in accurately computing the
radiance received by each pixel, especially when a strand only par-
tially overlaps a pixel.

Let P denote a pixel’s footprint on the image plane. The pixel
intensity Ip is defined as the average outgoing radiance over this
footprint along the camera viewing direction ®p:

1
Ip = W./PLG(xp,mp)dxp, €))

where Lo(xp,®p) is the outgoing radiance at point x;, in direction
®p, and |P| is the pixel’s area.

To illustrate the challenge, we first analyze a simplified case
where a single strand intersects the pixel alongside the background.
Let P C P be the subregion occupied by the hair strand, and
P~ := P\ P" be the remaining background region. The pixel in-
tensity then becomes:

1
Ip=— / Lb(—oop)dxp+/ Lo(xp, @p)dxp
|P| \Jp- P+
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where L,(—mp) denotes the background radiance, assumed to be
approximately constant over P~ .

Accurately computing this expression introduces two major
challenges. First, as demonstrated in [MJC*03], hair exhibits high-
frequency shading variations due to glints and inter-reflections,
making it difficult to estimate the second term in Euqation 2 us-
ing traditional Monte Carlo integration without introducing noise.
Second, at typical viewing distances, the projected width of a sin-

gle strand is often smaller than the pixel size, which complicates
_ P

the estimation of pixel coverage C = R

Moreover, in practical scenarios, when multiple hair strands in-
tersect within a single pixel (i.e., in dense regions), the pixel cover-
age can be effectively handled using standard rendering techniques.
However, in sparse regions where only a few strands contribute to
the pixel coverage, this approach becomes insufficient due to the
lack of sufficient information from the G-buffer. To address this, we
focus on enhancing the estimation for these low-coverage regions
by supplementing the rendering with single-strand contributions,
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Input image and G-buffers
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Alpha Fix Anisotropic Filtering

Figure 2: Overview of our hair linking and filtering pipeline. Starting from G-buffer data and a 1-spp input image, we first link disconnected
flyaway fibers via a hair linking procedure. Next, an alpha fix step enforces energy conservation, mitigating transparency-induced artifacts.
Finally, we apply anisotropic filtering to reduce noise while preserving high-frequency hair details.

thus ensuring more accurate shading and reducing artifacts. We be-
gin by analyzing the rendering results under a 1spp constraint, de-
noted as I = {ly,1,...,In}, and apply this approach specifically to
the sparse regions.

For each pixel, we have an associated G-buffer:
Gp= {Ds,xsaTs,Ks,us}, 3)

where Dy is the sample depth, X, is the world-space position, Ty is
the local tangent, Ky is the strand ID, and uy is the curve parameter
along the strand. The final pixel intensity can thus be modeled as a
function of this data: Ip = ®(Gp).

In dense hair regions where strands dominate the pixel footprint
(e.g., near the scalp), TAA [YLS20] and similar techniques often
yield acceptable results. However, in sparse regions—particularly
at the hair contours where strand coverage is low—these methods
struggle due to insufficient information in the G-buffer. This leads
to noticeable aliasing and loss of fine details.

To address these limitations, we first introduce a hair linking
step (Section 4.1) that recovers pixels mistakenly classified as back-
ground by associating them with the correct hair strands. This al-
lows us to build an enhanced G-buffer Gp by propagating accurate
per-strand attributes to these previously underrepresented pixels.
Using this updated information, we can also estimate the strand
coverage Cp more reliably.

In addition, we propose a fine elliptical-shaped filter kernel tai-
lored to the anisotropic structure of hair (Section 4.3). This ker-
nel accounts for the local tangent orientation and spatial extent of
each strand, further reducing shading artifacts and aliasing in low-
coverage regions.

4. Our Method

In this section, we detail each component of our proposed method,
which consists of three main stages: Hair Linking, Alpha Fix and
Orientation-Aware Anisotropic Filtering (Figure 2).

4.1. Hair Linking

As shown in Figure 3, to recover missing pixels Pempry in the initial
G-buffer I, we identify candidate strands in the 3x3 neighborhood
around Pempry and select the one most likely to intersect it. This
serves as the basis for initializing strand propagation.

Strand Selection. We assume that a single hair strand projected
into screen space appears smoothly and continuously. Based on this
observation, we make two assumptions:

e Tangent alignment: A valid strand’s tangent direction should
align with the vector connecting it to Pempry.

e Spatial proximity: A valid strand is likely to be spatially close to
Pempry in screen space.

We compute an alignment score € that combines these criteria:

o (Sempty _Si) 'TlPrO] -€Xp <_ HSl _Sempty||2> (4)

T |Sempty - Sl| 262

tangent alignment spatial proximity
Here, S; and Sempry are the screen-space positions of sample s;

and the center of Pempry, and T/ is the screen-space projected
tangent of strand K;.

We select the source sample ssrc and its strand k with the highest
score above a threshold €,)ign:
Ssrc = argmaxe;  subject to € > €qlign- 5)
Si
If no candidate exceeds the threshold, Pempry is not filled. In this
paper we set €; to 0.5 across all scenes.

Once the optimal source sample is identified, we proceed to
propagate along strand x to determine which other pixels it inter-
sects, as described below.

Adaptive Propagation After selecting a valid candidate strand
K, we aim to fill in missing pixels it traverses. Direct intersection
tests between a strand and pixel boundaries are expensive, so we opt
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Figure 3: Illustration of Hair Linking. When sampling rates are
insufficient, thin flyaway hairs may be entirely missed, leading to
visible discontinuities. We illustrate our hair linking strategy, which
identifies missing pixels (Strand Selection) along fibers and adap-
tively extends the fiber forward (Adaptive Propagation) to restore
geometric continuity. The last row shows the hair linking process
and results on rendered image.

for an efficient point-sampling approach along the strand’s para-
metric curve. Our goal is not to verify whether a single pixel inter-
sects with the curve, but rather to identify all fillable pixels that the
curve passes through during propagation.

We initialize the parametric sampling step Au based on the
screen-space distance between Pempry and Ssrc:

M (Sempry) =M™ (Sure) |
Length(k)

Aug (©)
where M~ is the inverse camera projection matrix, Length(k) is
the length of this segment in world space.

We then iteratively adjust the step size based on screen-space
distance between successive samples to prevent over- or under-
sampling:

Au;—y

Aup o DMzl
llsi —si—1ll

@)

Propagation Rules. Starting from sgrc, we propagate forward (or
backward) along the curve according to the strand’s tangent direc-
tion. At each step, we determine if the sampled point lies within an
empty pixel. If so, we assign the strand’s attributes to that pixel.

The propagation terminates under one of the following condi-
tions:

e The curve reaches its endpoint (i.e., the parametric u value
reaches 0 or 1).

e The next projected point falls outside the image boundary.

e The sampled pixel is already filled.

Figure 4: Effect of Alpha Fix. Left: before alpha fix; middle: with
alpha fix; right: reference. Due to the subpixel width of individ-
ual hair strands, transparency conveys the perceived thinness of
hair. Without alpha correction, flyaway fibers appear overly thick,
and regions of moderate density become unnaturally bright due to
accumulated opacity. Our alpha fix enforces energy conservation,
resulting in more visually plausible, softer hair with consistent ra-
diance.

This ensures efficiency while avoiding the introduction of spurious
strands.

4.2. Alpha Fix

When filling empty pixels through strand propagation, our goal is to
avoid introducing obvious energy increase in Eq. 2. Instead of accu-
mulating albedo or radiance (which could lead to over-saturation),
we adopt an alpha blending scheme. In this approach, newly filled
pixels are treated as partially covered by the hair strand and par-
tially by the background. By blending the hair and background col-
ors according to the strand’s original coverage, we ensure the added
pixels do not make the hair appear brighter than intended. For each
strand K, let M denote the number of pixels originally rasterized
from the strand, and N the number of additional pixels filled in via
propagation. We define a strand-wise alpha as:

o— M
M+N
This o represents the fraction of the strand’s original coverage over

the total post-propagation coverage. For each pixel i in M UN, we
compute its final shaded color as:

Cina1 (i) = 0 Cair + (1 — ) - Cig (i) ©)

Here, Cy,;; is the average hair color computed from the originally
rasterized pixels (M), and Cbg(i) is the average background color
in the vicinity of pixel i. Even for pixels originally belonging to the
strand (i € M), we do not use the exact background value hidden be-
hind the hair. Instead, we estimate Cyg (i) by sampling background
regions around the pixel. This strand-wise alpha blending strategy
conserves the total energy contributed by each strand. The use of o
for hair color guarantees that the total radiance across M + N pixels
matches the original radiance across M pixels:

Z Chair = Z Chair (10)

ieM iEMUN

®
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By smoothly blending in background color based on o, we pre-
vent over-saturation and ensure that no region becomes unnaturally
bright or transparent. The result (Figure 4) is a visually consistent
rendering of hair strands after propagation, maintaining both phys-
ical plausibility and perceptual quality, avoiding hard transitions
between original and propagated areas. Figure 8 demonstrates that
the alpha correction stage remains effective even in the presence of
complex backgrounds.

4.3. Orientation-Aware Anisotropic Filtering

Finally, we apply a filtering stage
to reduce residual noise and arti-
facts in the alpha matte, preserv-
ing fine hair structures. To achieve
this, we perform anisotropic filtering
aligned with each strand’s screen-
space tangent direction, denoted as
Tp, to avoid cross-strand blurring
while maintaining the intricate de-
tails of hair (as shown in Figure
5). This anisotropic filtering method
contrasts with traditional isotropic
filters, which tend to smooth across both strand directions, leading
to undesirable artifacts in the case of hair-like structures.

Figure 5: Anisotropic fil-
tering.

In our approach, we design an elliptical kernel, oriented along
the direction of T, with the following parameters:

o r: the length of the kernel’s major axis.
e p: the aspect ratio of the elliptical kernel.

Filtering is performed strictly within the bounds of the ellipti-
cal region, ensuring that smoothing occurs predominantly along
the direction of hair growth and minimizes blurring of neighbor-
ing strands. The result is a visually coherent matte that enhances
the fine details of hair while removing high-frequency noise. This
step enhances visual coherence, eliminates high-frequency noise,
and prepares the output matte for robust downstream applications
such as compositing or neural rendering.

In our filtering kernel, the composite weight w, for each neigh-
boring pixel Q within the kernel domain Q(P) is determined by
three factors:

2
e Spatial attenuation: exp <—%), where dp = ||P — Q]| is the
d

screen-space Euclidean distance between pixels P and Q,
2

R . 0
o Directional alignment: exp ( — c—%) , where 8g = Z(Tp,Q—P)
0

is the angle between the tangent direction Tp and the vector from
PtoQ,

e Color similarity: exp (

2
7%» where Cp and Cp are the

RGB color vectors of pixels P and 0.

The final weight wy is computed as the product of these three
factors:

2 62 Cr—Col?
Wq = exp (dg -exp ,% - exp (”PZQ| . (1)
c; o7 (o743

Here, 6,4, Gg, and G, are user-defined parameters that control the

x10%
1.651

-o- MSE
¥ Best: k = 0.01, MSE 0.001363

0 0.01 0.02 003 004 0.05 0.06
k

Figure 6: Selection of Filter Kernel Size k. To determine an ap-
propriate kernel size for filtering, we evaluate the denoised result
under different kernel radii by computing the mean squared error
(MSE) against a reference image. The kernel size yielding the low-
est MSE is selected.

influence of spatial distance, directional alignment, and color simi-
larity, respectively. In this paper, we set the parameters 6, Gg, and
o. t0 0.1, 0.1, and 0.9, across all scenes. These factors ensure that
pixels closer in screen space, aligned with the hair tangent, and with
similar colors have a greater contribution to the filtered result.

The final radiance at pixel P is computed as the normalized
weighted average of neighboring pixel colors:

Cp= MA (12)
Y eap) Wq

The length of the major axis of the filtering kernel r is dynam-
ically chosen based on the screen-space projection of the hair, de-
noted as By,;,- This bounding box represents the extent of the hair
in screen space and is computed as the projection of the hair geom-
etry onto the 2D image plane. Then r is selected using a heuristic
based on the screen distance to the object, with the following for-

mula:
r=kx \/ BHair,x X BHair,ya (13)

where By x and Byajr,y are the dimensions of the hair’s bounding
box along the x- and y-axes, respectively, and £ is a scaling factor
determined experimentally. In our implementation, k is typically
set to approximately 0.01 which corresponds to about one-tenth of
the bounding box’s dimensions. The selection of k£ was derived by
testing a range of values and optimizing the filtering performance
based on mean squared error (MSE). (Figure 6 illustrates our se-
lection process for the filter kernel size k). We test N parameter
sets and select the one yielding the lowest MSE across a set of test
cases. This adaptive approach allows the filter size to vary with the
thickness and distance of the hair in the scene, ensuring that the
filtering operation is neither too coarse (leading to oversmoothing)
nor too fine (causing artifacts due to insufficient smoothing).

5. Implementation Details

This section outlines the details of our pipeline implementation.
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[CAS22]
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Figure 7: Comparison with State-of-the-Art Neural Hair Filter-
ing Method. We compare our method against a state-of-the-art
neural network-based hair filtering approach [CAS22]. Note that
each method is evaluated with its corresponding input and refer-
ence, as the neural model was specifically trained on hair materi-
als without dual scattering and under their own rendering setup.
The neural baseline exhibits excessive blurring and characteristic
grid-like artifacts, with notable energy inconsistencies around the
crown area. While it can reconstruct missing flyaway fibers, their
intensity is inaccurate and visually diluted. In contrast, our method
preserves the fine structure of flyaway fibers with correct energy
and reconstructs sharper and more faithful primary hair regions.

5.1. Hair Linking

For the hair linking stage, we employ pixel-level parallelism to en-
sure computational efficiency, making the approach highly com-
patible with GPU architectures and scalable to high-resolution
renderings. Furthermore, since our reconstruction relies solely on
screen-space attributes, we compress the G-buffer content using an
RGBA32 texture. Through bitwise encoding, multiple values are
compactly packed into the texture, allowing for significantly more
efficient memory utilization.

e Channels RG: Encode screen-space curve normals (2x32-bit
floating point)

e Channel B: Stores the curve’s parametric coordinate ¢ € [0, 1]
(32-bit floating point)

e Channel A: Bitmask field containing:

— Bit 0: Hair presence flag (1 = hair pixel, 0 = non-hair)

— Bit I: Fitting source indicator (1 = filled by algorithm, 0 =
original)

— Bits 2-31: Primitive ID storage (30-bit integer for hair strand
identification)

In our implementation, we adopt a visibility buffer strategy, orig-
inally developed for hair rendering [SDJ19], to effectively support
multiple spp. Specifically, each pixel on the visibility buffer stores
at most one fragment, ensuring unambiguous reconstruction even
in multi-sample settings. Multiple visibility buffer pixels are then
aggregated onto a single screen pixel, enabling multi-sample recon-

Reference (1024 spp)

Figure 8: Results of our method under complex lighting and back-
ground conditions. Despite the presence of noisy inputs caused
by intricate environmental illumination, our approach robustly
achieves strand linking and denoising for fly-away fibers, preserv-
ing fine hair structures. Additionally, under complex backgrounds,
our alpha refinement module effectively corrects hair transparency,
maintaining accurate matting.

struction without conflict. This design not only facilitates correct
accumulation of samples but also preserves the efficiency neces-
sary for real-time rendering. Although real-time applications typ-
ically operate under low spp, our framework remains compatible
with high spp configurations when required (Figure 9).

5.2. Alpha Fix

In this stage, we record two quantities for each curve segment: M,
the number of pixels originally hit from the strand, and N, the num-
ber of additional pixels filled in via propagation for each curve seg-
ment. Given that a typical human scalp comprises tens of millions
of segments, we employ a hash map to balance concurrency ef-
ficiency and memory usage. The size of the hash table is dynami-
cally adjusted based on the image-space bounding boxes of the hair
regions:

Sizepasn = [W x H x 1.2], (14)

where W and H denote the width and height of the axis-aligned
bounding box (AABB) containing all the strands in image space.

6. Results

We validate our method through a series of experiments across di-
verse hair geometries and rendering scenarios. All results are ren-
dered using a Marschner hair model [MJC*03] with dual scatter-
ing enabled [ZYWKOS]. The input is a 1 spp noisy image gener-
ated via OptiX path tracing, simulating a challenging yet realistic
rendering setup. Unless otherwise stated, our reconstructions op-
erate at the segment level, where each hair strand is represented
by multiple connected segments (1 strand 60-70 segments). The
reconstruction and filtering are therefore aligned with this physi-
cally grounded segmentation granularity. Comparison with Anti-
Aliasing Techniques. As illustrated in Figure 1, our method sub-
stantially outperforms SMAA [JESG12], which fails to recover thin
and broken flyaway strands. While SMAA helps alleviate aliasing
artifacts around coarse edges, it lacks the semantic and geomet-
ric understanding necessary for recovering disconnected segments.
Our approach reconstructs such fibers consistently and preserves
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Input (16 spp) Ours

Figure 9: Result under 16 spp input condition. Our method can
work roubstly under different input spp.

the high-frequency geometry in both straight and curly hair re-
gions. Figure 10 presents a comparison between our method and
MSAA [FT20], SSAA [FvDFH90], and TAA [YLS20], illustrat-
ing that existing popular anti-aliasing techniques fail to handle hair
rendering effectively.

Comparison with General-Purpose Denoisers. We further
compare our method against OptiX’s built-in denoiser [NVI25] and
Intel’s OIDN [Int21]. As shown in Figure 1, both denoisers can
reduce pixel-level noise but tend to over-smooth high-frequency
structures, especially in regions with dense overlapping strands or
fine flyaway fibers. OIDN, in particular, introduces visible blur-
ring near the roots and fails to recover strand-level continuity. In
contrast, our method accurately reconstructs individual segments
with sub-pixel consistency, preserving fine hair structure even in
complex occlusion scenarios. Comparison with Neural Hair Fil-
tering. In Figure 7, we benchmark our method against a recent
learning-based hair filter [CAS22]. Although the neural approach is
specifically trained on hair materials, it suffers from spatial blurring
and introduces characteristic grid-like artifacts due to its screen-
space processing pipeline. Additionally, energy inconsistencies are
observed near critical regions such as the crown and hairline. Our
method, in comparison, produces sharper results with physically
consistent brightness and improved fidelity for both primary and
flyaway hair structures. Notably, we reconstruct sharper glints and
highlight transitions without sacrificing fine detail.

Ablation Study. Figure 11 presents a step-by-step evaluation of
our pipeline. Beginning from the raw 1 spp input, we show pro-
gressive reconstruction quality after candidate strand extrapolation,
pixel coverage correction, and final hair-aware filtering. The quali-
tative improvements are consistent across various hair colors, in-
cluding blonde, black and red; various hair types include curly,
straight and ponytail. This validates the generality and robustness
of our method across heterogeneous inputs.

Performance. Our framework operates in real-time on modern
GPUs. The entire pipeline, including candidate selection, extrap-
olation, and filtering, takes under 8 ms per frame for scenes with
50,000 strands (3.4 million segments in curly hair scenes, 1.2 mil-
lion in straight, 1.6 million in ponytail). We observe stable runtime
performance regardless of hair complexity, as our segment-level

Figure 10: Comparison of anti-aliasing techniques on complex
geometry. Results from MSAA [FT20], SSAA [FvDFH90], and
TAA [YLS20] are shown alongside our method. The prior meth-
ods struggle with aliasing artifacts on fine structures such as hair
strands

operations scale linearly with the number of segments processed.
In the video, we demonstrate the efficiency of our method, where
at this observation scale, the original 1spp shading for the curly
hair scene runs at 45 fps, while after linking and filtering, it drops
to 37 fps. For the straight hair scene, the original 1spp shading runs
at 43 fps, while the performance drops to 34 fps after linking and
filtering.

Resolution. All experiments were conducted at 1920x1080 res-
olution by default. The method is not resolution-limited; its perfor-
mance mainly depends on screen resolution. The number of hair
strands only indirectly affects the computational load. Under con-
stant hair width and viewing distance, higher strand density tends
to produce fewer missed (empty) pixels, while greater strand cur-
vature increases the steps required during linking.

7. Conclusion and Discussion

Limitations. While our method demonstrates high fidelity in re-
constructing strand-level hair geometry and robustly suppressing
noise in real time, several limitations remain. First, in regions where
dense hair structures occlude one another (e.g., multi-strand inter-
sections or volumetric clustering), our current algorithm does not
explicitly model complex inter-strand relationships. This simplifi-
cation may lead to local inaccuracies in such high-complexity con-
figurations. Additionally, although our screen-space extrapolation
is generally effective, it can produce slight blurring near the main
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Input (1 spp) + Hair Linking + Alpha Fix + Anisotropic Filtering Reference
Figure 11: Step-by-Step Evaluation of Our Method. We demonstrate the effectiveness of our pipeline across various hair types, including
curly, straight and ponytail hair; blonde, black and red hair. Each column shows the progressive improvement through key stages of our
method, culminating in the final output. The corresponding reference is shown for comparison.
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body of hair masses, especially under strong perspective foreshort-
ening. Nonetheless, these artifacts are visually subtle and largely
acceptable in real-time applications.

Future Work. A natural direction for future work is to integrate
our strand reconstruction with learned denoisers in a joint opti-
mization framework. This would allow for end-to-end training and
could improve both segmentation robustness and reconstruction ac-
curacy. Another promising extension is to incorporate volumetric or
physically-based hair priors to better handle dense or tangled hair
structures where multiple strands overlap in projection. Finally, de-
veloping multi-resolution strategies or temporal filtering schemes
could further stabilize results in animated sequences or under fast
camera motion.

Conclusion. We present a real-time, strand-level reconstruction
framework for hair that is both visually similar to the reference and
efficient. By leveraging a three-stage pipeline—candidate strand
extrapolation, unbiased pixel coverage approximation, and hair-
aware filtering—we achieve high-fidelity hair reconstruction with
significant noise reduction. Our approach preserves fine-grained
details while remaining computationally efficient, making it suit-
able for real-time rendering and interactive editing tasks. The mod-
ularity of our design allows it to work in tandem with existing de-
noisers, and our results closely match ground truth even under chal-
lenging conditions.
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