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Fig. 1. Left: Metropolis, a cityscape rendered with our scene aggregation approach. The scene includes 82 unique buildings and 270 instances and originally
requires 46.9 GB to store. Our representation drastically reduces the size to 5.33 GB while preserving the detailed appearance. Right Top: Each instance
selects the appropriate LoD resolution where the projected voxel size matches the pixel footprint (rounded to the nearest power of two). Right Bottom: As a
result, close-view instances are rendered with finer voxels while distant instances are rendered with coarser voxels.

Creating an appearance-preserving level-of-detail (LoD) representation for
arbitrary 3D scenes is a challenging problem. The appearance of a scene
is an intricate combination of both geometry and material models, and is
further complicated by correlation due to the spatial configuration of scene
elements. We present a novel volumetric representation for the aggregated
appearance of complex scenes and a pipeline for LoD generation and render-
ing. The core of our representation is the Aggregated Bidirectional Scattering
Distribution Function (ABSDF) that summarizes the far-field appearance of
all surfaces inside a voxel. We propose a closed-form factorization of the
ABSDF that accounts for spatially varying and orientation-varying material
parameters. We tackle the challenge of capturing the correlation existing
locally within a voxel and globally across different parts of the scene. Our
method faithfully reproduces appearance and achieves higher quality than
existing scene filtering methods. The memory footprint and rendering cost
of our representation are decoupled from the original scene complexity.
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1 Introduction

Modern physically based rendering is widely adopted to synthesize
photorealistic images, animations, and immersive 3D experiences.
Generating content at such level of realism requires large-scale as-
sets with extremely detailed geometry, textures, and sophisticated
material models. This presents significant challenges to the ren-
dering process both in terms of storage and speed. Among them,
one prominent issue comes from the mismatch between scene com-
plexity and image resolution. In an open-world environment, it is
typical to only have a small portion of the scene contribute to the
foreground, while the majority of the scene is minified in the back-
ground. It is wasteful to load and render the entirety of the scene
when the image resolution is not even enough to resolve the details.
Moreover, the rendering cost of different pixels can be highly un-
even. Some pixels may cover a drastically more complex part of the
scene than others and thus require an excessive sampling budget
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for convergence. On the other hand, ignoring such complexity often
leads to aliasing, artifacts or incorrect appearance.

Level-of-detail (LoD) techniques reduce the heavy, unbalanced
rendering cost by converting, or prefiltering, the original scene to
a multi-scale representation in a precomputation step. Depending
on how much detail is required for each pixel, only an appropriate
scale of the representation is accessed and used for rendering. In
this way, LoD techniques are able to decouple rendering cost from
the original scene complexity and distribute the cost evenly among
pixels.

In order to improve efficiency, LoD techniques usually perform
simplification to the original geometry. A key challenge for any
LoD technique is that it should preserve the original appearance
after the simplification. When viewed at distance, the appearance is
a compound phenomenon of both geometry and material models.
Simply discarding or averaging geometry would result in appear-
ance mismatch and artifacts [Luebke et al. 2003]. Instead, the tech-
nique should condense the effect of the original geometry into the
simplified representation. This process can be called appearance ag-
gregation. It is important to realize that the aggregated appearance
can be more complex than, say, the original material models because
it describes more information. However, it can still be advantageous
performance-wise compared to tracing the explicit geometry.

Many existing LoD solutions convert geometry to volumes for fil-
tering or downsampling. The recurring difficulty for these solutions
is the loss of geometric correlation. We lose track of how the geome-
try is distributed locally within a volume when it is abstracted away.
Furthermore, if multiple regions are simplified separately, we lose
track of the long-range visibility caused by the specific spatial con-
figuration between geometry of different regions. Correlation exists
ubiquitously in different types of scenes, such as those containing
large, connected surface or regularly organized structures. Ignoring
correlation leads to incorrect appearance for the LoD representation.

In this work, we propose an accurate volumetric scene appear-
ance aggregation method for LoD rendering. Our representation
supports arbitrary types of scene geometry from completely opaque
surfaces to stochastically distributed structures, and a wide range
of appearance from glossy to diffuse. At the heart of our repre-
sentation is the Aggregated Bidirectional Scattering Distribution
Function (ABSDF) that summarizes the appearance of all surfaces
inside a voxel. Contrary to existing volume-based methods, our
method inherently keeps track of long-range correlation by record-
ing the global visibility originated from a voxel and from the scene
boundary. Simultaneously, we propose a novel truncated ellipsoid
primitive to better handle the local correlation within a voxel. We
focus on the appearance of a scene at far field, as is the case when
an LoD representation gains the most benefit. Similar to Bako et al.
[2023], we focus on the appearance with direct illumination, which
is arguably the more challenging part compared to the indirectly
illuminated counterpart as it is subject to more visible artifacts such
as leaking and bloating. Our method achieves high rendering fi-
delity by preserving the complex visual appearance caused by both
geometry and materials (Fig. 1, Fig. 15, and Fig. 16).

To summarize, our contributions include:
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e A novel formulation for representing and rendering far-field scene
aggregates for arbitrary scenes with the Aggregated Bidirectional
Scattering Distribution Function (ABSDF).

A closed-form factorization of the aggregated appearance that
captures all-frequency and view-dependent effects. The resulting
model supports efficient evaluation and importance sampling.

A practical solution that handles local correlation by truncated el-
lipsoid primitives and long-range correlation by recording global
visibility.

e A scene aggregation pipeline that is scalable to large, complex
assets and offers asymptotic memory saving. Rendering cost is
decoupled from the original scene complexity.

2 Related Work

Representing scenes and appearance at multiple scales to improve
rendering efficiency and quality is a long-standing problem in com-
puter graphics. We draw inspiration from various previous work
ranging from surface-based approaches to volume-based approaches,
together with hybrid approaches in between. In addition, the recent
advances of neural representations provide a set of new tools proven
to be effective in certain graphics applications.

Mesh Simplification. Polygon meshes are by far the most common
representation of 3D models in computer graphics. A large amount
of study has been focused on algorithms that simplify a complex
mesh by collapsing edges and merging vertices [Garland and Heck-
bert 1997; Hoppe 1996]. Some attempts have been made to extend
mesh simplification to consider appearance to a limited extent [Cook
etal. 2007; She et al. 2019]. Mesh simplification techniques are widely
employed in movie and video game production [Karis et al. 2021].
However, they are fundamentally unable to preserve the complex
appearance that is a combination of both detailed geometry and
material models. More recently, Hasselgren et al. [2021] jointly op-
timize triangle meshes and material parameters to minimize the
image-space difference to the target scene by a differentiable raster-
izer. However, the shading model is limited to be the same before
and after optimization. The optimization also ignores global effects
such as shadows.

Surface Appearance Filtering. Surface-based filtering techniques
focus on filtering the spatially varying material attributes and mi-
croscale geometric details while keeping the original macro-scale
surface geometry. Normal map filtering, for example, converts the
normal directions inside a footprint to a normal distribution func-
tion (NDF) to preserve highlights when viewed from afar [Han et al.
2007; Kaplanyan et al. 2016; Olano and Baker 2010; Toksvig 2005].
Xu et al. propose to jointly mipmap BRDF and normal maps [Xu et al.
2017]. Glints rendering [Yan et al. 2014, 2016] focuses on resolving
the highlight from specular micro-geometry, which is essentially the
same problem. However, both the spatial resolution of the normal
maps and the angular resolution of the NDFs are much higher. The
source normal maps can also be procedurally generated to alleviate
the high memory cost [Jakob et al. 2014; Wang et al. 2020; Zirr and
Kaplanyan 2016]. Displacement map filtering incorporates the mi-
croscale geometric details provided by displacement maps inside a



footprint into a shading model [Dupuy et al. 2013; Wu et al. 2019].
Bi-scale material design models the macro-scale appearance of an
object by designing its microscale details and aggregates their ap-
pearance [Iwasaki et al. 2012; Wu et al. 2011]. Bidirectional texture
functions (BTFs) represent non-parametric 6D spatially varying sur-
face appearance. Filtering BTFs offers significant memory savings
and a performance boost [Jarabo et al. 2014]. Surface-based tech-
niques successfully simplify microscale details by prefiltering them
into an appearance model. However, they do not alter macro-scale
geometry, thus they are not helpful when macro-scale geometry is
the dominant factor in scene complexity.

Volumetric Appearance Models and Filtering. Using volumes to
represent complex geometry has been explored extensively since
first introduced by Kajiya and Kay [1989]. Volumes are traditionally
used to accelerate the rendering of dense, unstructured geometry
such as fur, hair, and foliage [Moon et al. 2008; Neyret 1998]. Jakob
et al. [2010] proposes the microflake theory that extends the radia-
tive transfer equation (RTE) [Chandrasekhar 1960] to anisotropic
participating media, enabling volumes to represent a wider range of
appearance such as fabric and cloth [Zhao et al. 2011, 2012]. Heitz
et al. [2015] further proposes the SGGX distribution to construct
efficient microflake phase functions that support linear interpola-
tion and closed-form importance sampling. As a high-resolution
volume can be very memory-intensive, several works consider the
problem of downsampling microflake volumes while preserving
the important self-shadowing effect [Loubet and Neyret 2018; Zhao
et al. 2016]. The classic volumetric light transport theory that builds
on the RTE assumes independently distributed scatterers and thus
does not support spatial correlation, limiting its expressiveness for
general scene representation. More recently, it has been further ex-
tended to support spatially correlated participating media through
different formulations [Bitterli et al. 2018; Jarabo et al. 2018]. Vicini
et al. [2021] proposes an empirical non-exponential transmittance
model that, while not physically-based, improves the ability to model
correlation and opaque surfaces when combined with data-driven
optimization. While volume-based techniques are able to simplify
macro-scale geometry, volumetric light transport itself is signifi-
cantly harder to solve than surface light transport and typically
takes a longer time to converge for Monte Carlo path tracing.

Another line of works focuses on building efficient voxel-based
data structures. Crassin et al. [2009] and Laine and Karras [2010]
propose different variants of a sparse voxel octree (SVO) to render
massive volumes at interactive rates. The SVO data structure can be
further specialized to support even higher resolution [Kampe et al.
2013]. Building on top of SVO, Heitz and Neyret [2012] proposes
a representation to filter the appearance of detailed surfaces with
the ability to reproduce view-dependent effects and account for
correlation of occlusion and attributes with visibility. However, they
only support opaque surfaces modeled by a boundary representation.
Thus, their work is not applicable to a wide variety of subjects
consisting of dense, unstructured geometry.

Hybrid Approaches. A number of works attempt to combine the
advantages of surface-based techniques and volume-based tech-
niques. Dupuy et al. [2016] draws a theoretical connection between
microfacet and microflake theories. Granular material rendering
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techniques achieve acceleration by switching representation at dif-
ferent scales of light transport [Meng et al. 2015; Moon et al. 2007;
Miiller et al. 2016; Zhang and Zhao 2020]. Grains are only explicitly
traced during initial bounces. For longer-scale light transport and
multiple scattering, grains are replaced with a volumetric represen-
tation that is rendered by volumetric path tracing and eventually
diffusion methods. Loubet and Neyret [2017] proposes a hybrid
LoD technique that performs a binary classification on the input
scene to divide it into a mesh part and a volume part at each scale.
Subsequently, the mesh part undergoes mesh simplification and the
volume part is represented by a microflake participating medium.
While the idea sounds straightforward, the classification unfortu-
nately suffers from ambiguity and the technique produces artifacts
when misclassification happens. Additionally, mesh simplification
may drastically alter surface curvature that results in incorrect
glossy appearance, as shown in Fig. 13.

Neural Representations. Neural implicit representations are shown
to be particularly effective at compactly reconstructing signals in
low-dimensional spaces such as radiance fields and shapes [Lom-
bardi et al. 2021; Martel et al. 2021; Mildenhall et al. 2020; Miiller
et al. 2022; Park et al. 2019]. While most works focus on point-wise
query and inference, some techniques build multi-scale representa-
tions that support range queries for anti-aliasing [Barron et al. 2021;
Takikawa et al. 2021]. However, most neural implicit representa-
tions are unable to model full appearance, with limited capability
for relighting [Baatz et al. 2022; Bi et al. 2020; Lyu et al. 2022]. For a
more comprehensive review, we refer readers to two recent surveys
on the subject [Tewari et al. 2022; Xie et al. 2022].

Traditional surface-based techniques can be enhanced by neural
components. Kuznetsov et al. [2021, 2022] achieve BTF compression
and filtering by simultaneously training a latent texture pyramid and
a small multilayer perceptron (MLP) decoder that supports isotropic
range queries. Gauthier et al. [2022] improve normal map filtering
by using an MLP cascade to learn downsampling kernels.

Recently, Bako et al. [2023] propose a deep learning-based ap-
pearance prefiltering framework. An input scene is converted to a
volumetric representation where each voxel records a monochro-
matic phase function, an average albedo, and a 4D view-dependent
coverage mask. To reduce the otherwise infeasible memory require-
ment, each type of data is compressed by a separate encoder-decoder
network that produces per-voxel latent vectors. The volume is ren-
dered by a beam tracer that traverses the voxels and decodes them
for shading and transmittance computation. The method preserves
accurate appearance but at a heavy cost in both precomputation and
rendering. The typical precomputation time is reported to be 0.5 to
2 days on a GPU cluster with 256 NVIDIA Volta GPUs. The com-
pressed per-voxel size is still large with 256 floats. In addition, the
beam tracer must traverse voxels ordered by distance to correctly
compute transmittance by accumulating the coverage masks from
each voxel. In contrast, our method only requires a much lighter
precomputation pass, a smaller memory cost, offers much faster
rendering speed, and results in similar rendering quality. Weier
et al. [2023] propose a neural prefiltering pipeline by learning a
compressed representation of the intra-voxel light transport. Two
independent networks for appearance and visibility are trained with
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a multi-level feature grid. The method handles diffuse-like appear-
ance well and supports indirect lighting. However, it struggles at
preserving glossy appearance and capturing all-frequency direc-
tional signals.

3 Far-field Appearance Aggregation and Factorization
3.1 Overview

Our goal is to develop an appearance-preserving representation of
a scene that is independent of the original geometry complexity,
which we term scene aggregate. Fig. 2 provides an overview of our
method. When measured externally, the general light transport
of a scene aggregate can be characterized as an 8D function of
incident/outgoing positions (on a suitable bound of the scene) and
directions, similar to a BSSRDF. However, directly computing and
storing such a function is impractical due to the prohibitive memory
requirement. It is also not necessary as one might as well simply
switch back to the original representation for near-field appearance.
Therefore, our formulation is based on the far-field assumption.
When a scene is sufficiently far from the measuring sensor and
emitters that the sensor can no longer distinguish the internal spatial
structure, we may drop the positional dependency by integrating the
8D light transport function over positions. The resulting 4D function
of incident/outgoing directions describes the far-field appearance
of the scene aggregate and we name it Aggregated Bidirectional
Scattering Distribution Function (ABSDF), again due to its similarity
to a BSDF. In §3, §4, and §5, we define the ABSDF and present an
efficient, closed-from factorization of it.

In practice, an entire scene is usually too large to be considered
far-field all together. We apply spatial subdivision to the scene at
a suitable resolution given a certain pixel footprint such that the
subset of the scene included in each voxel satisfies the far-field as-
sumption. This introduces the subsequent problem of accumulating
the outgoing radiance from voxels and eventually measuring the
pixel intensities. Crucially, the accumulation problem is non-trivial
because the spatial configuration of voxels is not independent. Tra-
ditional volumetric representations model a scene as independently
distributed particles, which is incorrect because a scene made of
surfaces typically exhibits spatial correlation and ignoring such cor-
relation leads to artifacts or inaccurate appearance. In §6, we analyze
the problem of spatial correlation in detail, discuss our strategies
to preserve correlation, and derive the formulation for voxel ac-
cumulation. We provide a summary for commonly used symbols
throughout the paper in Table 1.

3.2 Defining ABSDF

We consider a subset of a scene A that consists of a set of surfaces.
Fromapoint x € A, the outgoing radiance given some direct incident
radiance L;(x, w;) is calculated by the following equation [Cohen
and Wallace 1993]:

Lo(rn) = [ Fx 0000500 (- 0V (5,00 don (1)

where f(x, w;, w,) is the surface BRDF at x, and we explicitly write
the visibility term V (x, w;). We are interested in the average outgo-
ing radiance from A when viewed from w,, which can be written
as a weighted average of per-point outgoing radiance masked by
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Table 1. Table of notation.

Symbol Explanation Def.
A A set of surfaces (in a voxel)
|A]| Surface area of A
|A] Projected surface area of A along w  §3.2, Eq. 2
A Aggregated Bidirectional Scattering
f Distribution Function (ABSDF) 832, Eq.3
Jrovis ABSDF without visibility §3.3, Eq. 7
n Surface normal
pn(n) Surface normal distribution function  §3.3, Eq. 8
SGGX distribution parameterized by
Dggpx(n)  eigenbasis R and roughness §3.3
@ = (ay, ay)
Material parameters at point x,
8 including roughness «, basecolor ¢ §33
(spectral), metallic value ™ (scalar), ’
and specular intensity f° (scalar)
Y Concatenation of n and f §3.3
py(y) Joint distribution of y §3.3
B Truncated ellipsoid primitive §6.1
c(w) Primitive coverage §6.1, Eq. 24
Vv Aggregated interior visibility §6.2, Eq. 25
Vi Aggregated boundary visibility §6.2, Eq. 26
(=-=) Clamped dot product

another visibility term along w,:

Lo(0) :ﬁ/ALo(x,wo)(nx-wo)V(x,wo)dx,
“o (2)
1AL, = /A (- o) d,

where |Al,, is the projected area of A along w,. We can apply the
far-field assumption such that the incident radiance is independent
of positions L;(x, w;) ~ L;(w;) and rearrange Eq. 2 by reordering
the integrations:

Lo(00) = [ flononLi(n don

1
1Al

fonon) = = [ (Fononon o0 O

V(x, wi)V(x, wo)) dx.

We define f (wj, w,) as the ABSDF of A as it captures the intrinsic
geometrical and material characteristics of A and is independent
of external sensors or emitters. It is not hard to see that the AB-
SDF satisfies energy conservation as long as f(x, w;, @,) is energy-
conserving. The ABSDF can be interpreted as an extension of the
effective BRDF [Wu et al. 2011] where surfaces are no longer con-
fined to a macrosurface or a heightfield, but allowed to be arranged
arbitrarily in free space. It also satisfies a generalized form of reci-
procity that is similar to the situation in the microflake theory [Jakob
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Fig. 2. An overview of our method. We start by voxelizing a scene such that the voxel size matches the given pixel footprint. For each voxel, we model its

aggregated appearance by its ABSDF. To preserve the local spatial correlation, we use a truncated ellipsoid primitive that describes the intra-voxel geometric
distribution. To preserve the long-range correlation, we record global aggregated visibility. Both lead to accurate voxel accumulation that is order-independent.

et al. 2010]. To summarize:

/2 Flrwo) dow; < 1, 4)
S
Alo f (@1 00) = |Al o, f (0, @) )
We note that it is possible to use the visible projected area
[Ay(wo)| = fA(nx - wo)V(x, w,) dx as the normalization term in

Eq. 3. In fact, the choice is not critical as the term will eventually be
cancelled out (Eq. 24, Eq. 28). We choose to use |A|,, for simplicity.
In practice, neither |A,(w,)| nor |Al,, needs to be computed or
stored.

3.3 A Closed-form Factorization of the ABSDF

According to Eq. 3, an ABSDF is defined by integrating the product
of base material, foreshortening factors, and bidirectional visibility
over the underlying surfaces. This is challenging, as in general, no
closed-form solution exists. However, we would also like to avoid
stochastic evaluation or numerical integration which would greatly
increase the rendering cost and undermine the purpose of scene
aggregation. To achieve closed-form evaluation and importance
sampling, we factor the ABSDF with the following premises.

Separate Visibility. We perform a splitting approximation that
separates the integration of the bidirectional visibility from the rest:

1
1Alw,

ﬁ /A Vx, w)V (x, ) dx.

Flonwo) ~ /A 00 00) (1 - 01y - 00) dx

(©)

This is similar to the approximation by Jiménez et al. [2016].
We focus on the first integral in the rest of this section and further
describe how to incorporate visibility into our framework in §6.2.

The Distribution Form of the ABSDF. With the visibility terms sep-
arated, we convert the ABSDF into a convolution between the base
material and the joint distribution of material parameters. Similar
operations have been employed in normal map and displacement
map filtering techniques [Dupuy et al. 2013; Han et al. 2007; Olano

and Baker 2010], but they usually only consider the distribution of
surface normals. Our formulation can be seen as a generalization
that incorporates all spatially varying parameters. Let yx = (ny, fx)
be a vector consisting of surface normal and all material parameters
at x. It can also be interpreted as a value of a random vector Y
with joint PDF py (y). We can rewrite the ABSDF (no visibility) as
follows:

1
1Alw,
1Al
 Alw,

ﬁlOViS(a)i5 wo) = -[Af(wi, Wo; Yx)(nx . wi><nx . wo) dx
(7)

/r Flon o) (n- 03} - w0y () dy,

where T is the product space of all parameters.

Surface Normal Distribution Function. The marginal distribution
of surface normals py(n), or the surface NDF, is important as it
affects the glossiness and anisotropy of the aggregated appearance.
It can also be complex because the underlying surfaces may be arbi-
trarily oriented. We use a mixture of the SGGX distribution [Heitz
etal. 2015] as a compact yet expressive representation for the surface
NDF:

k
pn(n) = ) Wil (n), ®
i=1

where the weights {w;} are positive and sum to 1. We describe the
fitting process for the mixture model in §7.1.

As will be seen in §4 and §5.2, our factorization involves con-
volving pn(n) with another isotropic spherical distribution g(w;n).
Because px (n) is a mixture of SGGX lobes, the result is the sum of
the convolution between each lobe Déggx (n) and g(w; n). We propose
to represent the per-lobe convolution as a similar but roughened
SGGX. We first parameterize an SGGX distribution by its eigenba-
sis R = (w1, w3, w3) and anisotropic roughness a = (o, ay). The
parameterization is detailed in the supplemental document. The
convolution can then be written as

/S2 9(@; 1) Dsgex (n; R, @) dn = Dggey (@3 R, a2y, )
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where R stays fixed but & gains additional values. This is inspired
by Xu et al. [2013], where a similar approximation is made for
anisotropic spherical Gaussians. While Xu et al. seeks a symbolic
approximation, we simply perform nonlinear least squares to find
the best mapping ;. = M(«, g). Note that this mapping is scene-
independent and typically smooth, thus only requiring precompta-
tion once and negligible storage. We observe accurate fits for all our
target distributions g. We provide derivation details and numerical
validation with different g in the supplemental document. Following
Eq. 9, the post-convolution distribution for the entire pn(n) is

k
Deons () = /S 90 () dn ~ 3Dl (0 ). (10)

Base Material. The ABSDF is dependent on the underlying surface
base materials. For the widest applicability, it is desirable to support
material models used by existing assets. Therefore, we target the
Disney Principled BRDF [Burley 2012], which is one of the most
commonly used models in production and capable of recreating
a wide range of appearance. The Disney BRDF is a sophisticated
model consisting of multiple lobes. We preserve its core feature but
make three modifications to the original model:

(1) For diffuse reflection, we use the simpler Lambertian model
instead of the original empirical model with retro-reflection.

(2) We omit the optional sheen and clearcoat lobes.

(3) We assume surfaces are double-sided.
The modified model can be written as

ﬁlisney(wis 6Uo) = f;i(wi’ wo) + ﬂ(wi’ (‘)0):

fawi, wo) = %(1 - BB
D(wp; @)G(w;, wo; )
4|n - wolln - wil

(1= B")F(wn 0i ).

where f;(w;, wo) is the specular component that consists of both
metallic and dielectric Fresnel reflection, f;(w;, w,) is the diffuse
component, D(wy) is the Trowbridge-Reitz (GGX) distribution as
the microfacet distribution, G(w;, w,) is the shadowing-masking
function, and F(wp, wo; o) is the Schlick Fresnel reflectance:

F(wp, @o510) =10(1 = Fe) + Fo,

Fe = (1= |wn - wol),
where r is the normal incidence reflectance (either ¢ for the metal-
lic lobe or f* for the dielectric lobe). The model is controlled by a set

of parameters § = (a, ¢, ", f°) = (roughness, basecolor, metallic,
specular intensity), which can all be spatially varying.

(11)

fol@iwo) = (B F(on woi )+

Overview of the Factorization. With the above premises, we give
an overview of the factorization of Eq. 7 before diving into the de-
tails in the next two sections. Our goal here is to reach a closed-form
solution without explicit numerical integration during rendering.
The diffuse and the specular components are handled separately as
the base material is a linear sum of both. For either component, our
general strategy is to first assume that material parameters (5, ™,
and f°) are orientation-independent. This allows us to extract rele-
vant terms out from the integral as the moments of those parameters.
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The moments will eventually be extended to be orientation-varying
(§5.4). For the remaining expression inside the integral, we will
utilize the surface NDF convolution technique to collapse the inte-
gral. This is relatively straightforward to carry out for the diffuse
component (§4). However, extra care is required for the specular
component because roughness a can be varying, and the domain
of integration is clamped (§5). After all the equations have been
introduced, a summary of the full procedure along with a diagram
of key equations will be provided in §5.5. We now start from the
simpler diffuse component.

4 Diffuse ABSDF Factorization

We substitute f;(w;, w,) into the integral of Eq. 7 and perform a
split by first assuming  and ™ are orientation-independent. This
means the joint parameter PDF py(y) becomes a product of two
marginal PDFs py (y) ~ p(f¢, f)pn(n) and we have

/rmw"’w";”x"'“’iﬂn-wo>py(y)dyz (12)
l m C C m C m . . .
‘/[o,l]z“‘ﬂ WP (F°. B™) df*dp /S (o) (0 0)pw(n) dn.

T

We extend our formulation to handle orientation-varying material
parameters in §5.4. After the splitting, the left integral can be sim-
ply represented by the means and second-order moments of the
parameters

S QBB 7 dpap™ =B -EL L 19)

For the right integral, we follow Wang et al. [2009] and fit the
clamped dot product function by a Spherical Gaussian (SG). Be-
cause SGs are closed under multiplication with a closed-form ex-
pression [Wang et al. 2009], we can expand the right integral of
Eq. 12 as

/(n-wi)(n-wo)pN(n) dn z/ ¢ - SG(wp;n,k)pn(n) dn, (14)
S2 §2

where c is the amplitude and « is the concentration for the product
SG. We refer readers to Wang et al. [2009] for the full expressions for
them. Notably, the product SG becomes a function of the half vector
p. The problem is then reduced to the convolution between an SG
and an SGGX, which we solve by employing the convolution tech-
nique described in Eq. 10. This comes with a table &y = M; (e, k).
Eq. 14 then can be evaluated in closed form given the surface NDF

pn(n).

5 Specular ABSDF Factorization

Next, we describe how to factorize the more challenging specular
component of the ABSDF. Together with the diffuse component, our
complete factorization will be validated at the end of the section.
We start by substituting f;(w;, w,) into the integral of Eq. 7 and



expanding it as

/r £ (@00 00i 1) - @) - w0)py (1) dy =

}[(1—f0)+fc/r7>py(y)dy], (15)

R=p"p+1-p"p,
D = D(wp; n, a)G(w;, wo;n, )1 (n - wo)1(n - w;),

where 1(-) is the Heaviside (step) function that evaluates to 0 or
1. 1(n - wo) and 1(n - w;) appear due to the clamped dot products
in Eq. 7. Similar to §4, we split the green highlighted integral in
Eq. 15 by assuming py (y) = py, (6, ™, B°)py, (n, @) and extend the
formulation to handle orientation-varying material parameters in
§5.4:

where I} and I, are the product space of (¢, f™, f°) and (n, a),
respectively. Once again, the left integral can be simply represented
by the means and second-order moments of the parameters

fr Row (y) dy =E["f] + ELF°] —ELF"F*].  (17)

For the yellow highlighted integral in Eq. 15 and Eq. 16, we propose

a closed-form solution with several small, scene-independent pre-

computed tables. The total storage for the tables is less than 5MB in

practice. We focus on the characteristic microfacet distribution term

D, which we now call Dpj. in the rest of §5 for better clarity. The

shadowing-masking term G is in general very smooth [Ashikhmin

et al. 2000; Kaplanyan et al. 2016; Wang et al. 2009]. Our strategy is
based on the convolution technique described in §3.3 and includes
three steps:

o §5.1: Identify the aggregated microfacet distribution Dimic(@p).

e §5.2: Convolve Dyyic(wp,) with the surface NDF pn(n) to get the
post-convolution distribution Deony (wp)-

e §5.3: Apply a scaling factor S(w;j, w,) to Deony(@wp) to correct
leaking because surfaces can be back-facing either to the view
point or to lights.

We now proceed to describe each step in detail. The complete model

is summarized at the end of the section (§5.5, Fig. 3). Additional

derivation details and numerical validation are available in the sup-
plemental document.

5.1 Aggregated Microfacet Distribution

As roughness a can vary on the surfaces of A, the microfacet dis-
tribution can no longer be represented by one GGX lobe. Let A be
the underlying random variable for the roughness and p 4 («) be its
marginal density function. The aggregated microfacet distribution
is the expectation of the microfacet distribution

Due() = /[ | Do pa(@) de (18)

We should represent p 4 () by a parametric distribution while ac-
knowledging that « is bounded in [0,1]. A Gaussian distribution is
thus not a valid choice. Instead, we use a beta distribution B(«; a, b)
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which has the correct support and is reasonably expressive. The
shape parameters a and b can be easily estimated (see supplemental
document). Eq. 18 can be interpreted as the weighted average of
infinite GGX lobes with different possible . Since there is no closed-
form solution for it, we further propose to approximate Diic(wp)
by a weighted average of 2 lobes:

ﬁmic(wh) ~ My Dric(@p; a1) + myDric(@p; a2), (19)

where m; + m; = 1. The approximation can be extended to use an
arbitrary number k of lobes, but we find k = 2 provides a good
balance between cost and accuracy. We perform a nonlinear least
square fit to find the best mapping (my, a1, a2) = My(a, b) given the
shape parameters of the beta distribution and store it as a small 2D
table.

5.2 Convolution with the Surface NDF

The aggregated microfacet distribution Dyc () is then convolved
with the surface NDF py (n). This is similar to normal map filtering
and specular shading antialiasing techniques [Kaplanyan et al. 2016;
Olano and Baker 2010]. We use the convolution technique described
in Eq. 10 for it and find the best mapping &, = Ms(ea, «), which
is stored as a small 3D table. Because both Dy and pn(n) are
mixtures, the convolution can be carried out per pair of lobes:

k 2
Dconv(wh) = ‘/sz Dmic((Uiz; ﬂ)PN(”) dn = Z ; WimijDé{)nv(wh),

i=1 j

% Dygge (03 R, @ = My (!, M! (o)), (20)

where we denote M{ (a') as a shorthand for fitting a beta distribution
for &' and querying M; for the roughness of the j-th Dy, lobe
(Eq. 19).

5.3 Correction for Conditioned Angular Domain

So far, we have ignored the Heaviside function terms 1(n - w;)
and 1(n - w,) in D. Alternatively, when integrating Dpy, (y), the
angular domain should not be the full sphere S2, but only a subset
conditioned on w; and we: X = Xy, = {n € S*(n- wi) >
0, (n-w,) > 0}. Intuitively speaking, the conditioned domain avoids
the incorrect contribution when w; or w, are from different sides
of the surface. Otherwise, the ABSDF will suffer from leaking. This
complicates the problem because Eq. 20 is not exactly a spherical
convolution when the integration domain is X'. To keep the efficient
convolution-based solution while addressing the potential leaking,
we rewrite Eq. 9 and apply the following approximation:

/ Dic(wp; 1, a)Dsggx(mR; a)dn
X
fX Dmic(wp; n, a)Dsggx(”;R, a)dn

Dsggx(w;Rs G{+) (21)
/X Dmic(wh; n, 0{) dn
/SZ Dnic(wp; n, ) dn

Effectively, we replace the Dggox term in both the right numerator
and denominator with a constant term of 1. We name the numerator
of S, / v Dhic(wp; n, @) dn, the shape term, as it reflects the geometric

= Dsggx(@; R ay)

~ Dsggx(w; R ay)

( = S(wi, wo;a)) .
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shape of the angular domain X'. Computing the shape term requires
integrating a GGX distribution over X, which is a “spherical lune”
formed by the intersection of two hemispheres. Note that X" can be
decomposed into two spherical triangles, and the problem reduces
to integrating a GGX distribution over a spherical triangle, which
can be approximated in closed form using Linearly Transformed
Cosines (LTC) [Heitz et al. 2016]. We precompute the inverse LTC
transform into a 1D table TL’TIC = My (o) (different from Heitz et al.
[2016], there is only roughness variation in our case). The denomi-
nator of S is the normalization term for a GGX distribution in the
spherical domain and can be easily precomputed as another 1D table
./SZ Duic(@p; n, @) dn = Ms(a).

Finally, we utilize the fact that the microfacet shadowing-masking
term G is very smooth. Therefore, we simply multiply it to each
lobe post convolution. We arrive at the following expression for the
yellow highlighted integral in Eq. 16:

2

k
/ DpYz (Y) d)/ ~ Z Z Wimij[Dé{mv(wh) Sij(wi, wo))Gij (wi, wo)s
I

i=1 j=1

Sij(wi’ wo) = S(wi) wa;aij)’ (22)
Gij(wi, (A)o) = G(C‘)i: Wo, Ri; aij)-

The expression consists of contributions from all convolved NDF
lobes (Eq. 20). Each term is multiplied by its scaling factor to ac-
count for the conditioned angular domain (Eq. 21). Eq. 22 can be
evaluated in closed form given the surface NDF px (n) and the first
two moments of roughness a.

5.4 Orientation-varying Parameters

We have previously assumed that ¢, ™, and f° are independent
of orientation in order to perform the split in Eq. 12 and Eq. 16. To
lift this limitation, we notice that both Eq. 13 and Eq. 17 collapse to
simple combinations of moments (means and second-order mixed
moments) of f¢, f™, and °. Therefore, we extend our formulation by
augmenting the moments to be orientation-varying. As an example,
when calculating the mean of a parameter E[f] for a particular
direction w, each sample on the surfaces should be weighted to
reflect its influence on w. In other words, each sample is “splatted”
to the spherical domain with a spherical function s(w) as the kernel,
followed by normalization. The directional moments can thus be
defined as

[y Bes(To) dx _ [ BeBis(Tew) dx, )

o fAs(Txa)) dx ° fAs(Txa)) dx

where T is the local transform at x. The surface NDF is implicitly
accounted for by transforming w into the local coordinate system.
The kernel s(w) is different for each component of the ABSDF: For
the specular component, it is the microfacet distribution; for the
diffuse component, it is the SG in Eq. 14. Finally, we query the
directional moments at wp when evaluating Eq. 13 and Eq. 17.
Now that the moments become orientation-varying, we can no
longer store them as simple scalars. In practice, we find that it is
usually sufficient to coarsely partition the spherical domain (e.g.,
3 X 3) because the angular frequency usually decreases as the scale

B[4

B8]
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of aggregation becomes larger. Each surface sample can then be
splatted to the partition during precomputation (see §7.1).

5.5 Summary and Validation

The derivation of our factorized ABSDF is complete at this point.
We conclude this section with a brief summary of the complete
model with a schematic diagram Fig. 3. The ABSDF (Eq. 7) with
the base material (Eq. 11) is the linear sum of a diffuse component
(Eq. 12) and a specular component (Eq. 15). The diffuse component
is decomposed to a moment term (Eq. 13) and convolution term
(Eq. 14). The specular component is decomposed similarly (Eq. 17),
but the convolution (Eq. 20) needs to be performed with care given
to the base distribution (Eq. 18) and the domain (Eq. 21). Finally, the
moments can be augmented to be orientation-varying (Eq. 23). A
total of 5 small, scene-independent precomputed tables are utilized
in different components as highlighted in Fig. 3.

NDF convolution
Eq. 14]
Moments (Eq. 13)
Moments (Eq. 17)

D integral

Diffuse (Eq. 12)

Orient.-varying
ABSOF 6.7

Fig. 3. Schematic diagram of our full factorized ABSDF model. The usages
of precomputed tables M, ..., M5 are highlighted.

In Fig. 4, we compare our factored ABSDF results to the ground
truth and further, the fitting results of the recent neural solution pre-
sented by Weier et al. [2023]. Their network (named the “appearance
network”) consists of a multi-resolution hash grid encoding [Miiller
et al. 2022] for spatial coordinates, spherical harmonics encodings
for incident and outgoing directions, and a multi-layer perceptron
to produce the final output. We use the exact same architecture and
hyperparameters as Weier et al. [2023] with 8 features per level and
8 degrees of spherical harmonics. We follow a similar training pro-
cedure by feeding a large batch of stochastic queries to the network
each iteration and optimizing for relative L, loss.

The Helmet example presents a particularly challenging case
with highly glossy anisotropic highlights, which we are able to
reconstruct well. On the other hand, the appearance network suffers
from various artifacts, including color shift, “blotchiness”, mode
collapse, and perhaps most significantly, loss of highlights. This
could be due to not enough features to capture the spatial variety
and that the spherical harmonics encoding cannot handle high
frequency signals. The network could potentially benefit from more
features and a better directional encoding at the cost of a larger
network size. For the more diffuse Palm example, we are able to
capture the dual-mode shape reasonably well thanks to the multi-
lobe surface NDF representation. The appearance network performs
relatively better on this example but still produces worse accuracy
than ours.

In Fig. 5, we demonstrate the necessity of supporting orientation-
varying material parameters and the effectiveness of our method.



We aggregate a displaced surface with basecolor varying based
on orientation and render it from 3 views. The surface exhibits
drastically different appearance from different views and our method
correctly captures this view-dependent appearance.

6 Correlation-Aware Appearance Accumulation

So far, we have presented the definition and an efficient solution
for the aggregated appearance of a voxel. In order to render a scene
aggregate, we need to accumulate the outgoing radiance contribu-
tions of multiple voxels for each pixel. Intuitively speaking, voxel
accumulation requires two pieces of information: (1) sub-voxel ge-
ometry distribution, and (2) the inter-occlusion across voxels. A
core challenge arises from the fact that spatial correlation generally
exists in a 3D scene made of surfaces. In the following, we motivate
the importance of preserving spatial correlation and discuss our
design to model the necessary information for voxel accumulation.
With these components, we formulate the process of accumulating
voxel contributions into pixel intensity.

6.1 Truncated Ellipsoid Primitive

Most volumetric representations produce cube-shaped voxels. For
each voxel, it is implicitly assumed that surfaces behave like uncor-
related particles and are independently and uniformly distributed
inside. This has been the de facto choice and one may argue that
with sufficient spatial subdivision, the raw resolution could compen-
sate for the simplicity of this assumption. However, it is important
to realize that scene aggregation is more than an image-space signal
reconstruction problem. The Nyquist-Shannon sampling rate is thus
not twice the image resolution, but twice the highest frequency of
geometric details, which can be much higher (if not unbounded) for
a scene consisting of hard surfaces. Because it is infeasible to reach
such a sampling rate, ignoring the spatial correlation inside each
voxel does negatively impact appearance. We demonstrate this by a
minimal example in the following.

In this double-counting example illustrated in Fig. 6, a simple plane
is discretized into diagonally neighboring voxels and is viewed from
aside. The voxel size is chosen to be half of the pixel footprint to
match the image-space Nyquist-Shannon sampling rate. Because the
voxels have thickness, whenever the film plane is not axis-aligned,
some points on the film plane receive contributions from more
than one voxel. This is clearly wrong because if we perform ray
casting from the film plane, a ray only intersects the ground-truth
geometry once. The mismatch is fundamentally because geometry is
not distributed uniformly inside a voxel. It could also be interpreted
as strong correlation between different voxels: whenever a ray hits
one voxel, it should never hit another. However, simple voxels fail to
capture this information and result in systematic error. In particular,
the error manifests as an objectionable checkerboard-like artifact.
We also provide magnified renders with higher image resolution
that better illustrate the source of this artifact.

To improve the accuracy of voxel accumulation, we consider
ways to support non-uniform intra-voxel distribution. Common
approaches that introduce further subdivision within a single voxel,
such as using a coverage mask, are essentially no different from
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brute-force supersampling. They are not cost-effective as we dis-
cussed earlier. Instead, we propose to fit a bounding ellipsoid for
the geometry in each voxel and define the new voxel primitive as
the intersection of the voxel and the ellipsoid. The new truncated
ellipsoid primitive is much more effective at adapting to different
geometry distributions: when the voxel includes a flat surface or a
fiber-like thin structure, the primitive now provides a much tighter
fit; when the voxel includes unstructured geometry, it falls back
to a cube shape. As shown in Fig. 6 (c), the new primitive greatly
reduces the artifacts while also producing a tighter object silhouette.
Note that we never need to explicitly store the cube-ellipsoid in-
tersection; it is sufficient to store the separate shapes and calculate
the properties of the intersection on-the-fly. Because the primitive
is a bounding volume, it should support “semi-transparency” to
reflect the quantity of the underlying geometry as the geometry is
abstracted away (Fig. 8 (a)). We define the primitive coverage of a
truncated ellipsoid primitive as

clw) = Ao, 2
|Ble

where |A|,, and |B|, are the projected areas of the surfaces bounded
by the primitive and the primitive itself, respectively. As will be
shown in §6.3, the primitive coverage is useful when accumulat-
ing the contributions from multiple voxels, though the numerator
|A|,, will be canceled and never explicitly needed. For simplicity,
we use an efficient Monte Carlo estimator to calculate |B|,,, the
projected area of the intersection of a cube and an ellipsoid, de-
tailed in the supplemental document. Alternatively, it is possible
to explicitly calculate the projected area by integrating over the
projected contour using Green’s theorem. The truncated ellipsoid
primitive provides a good trade-off in practice as it is easy to fit and
compact to store. See §7.1 for details. Recently, 3D Gaussians have
been shown to be effective at representing radiance fields [Kerbl
et al. 2023]. Our primitive bears some resemblance to a 3D Gaussian
but is ultimately designed for a different purpose. The truncation
avoids the ambiguity in defining the inter-occlusion between the
otherwise overlapping primitives. It also makes precomputation
and rendering more straightforward in practice.

6.2 Aggregated Visibility

In order to accurately accumulate the contributions of voxels, we
need to model the visibility between them when the input scene is
heterogeneous with a varying degree of spatial correlation. Existing
works show that when spatial correlation exists, transmittance is
no longer exponential and cannot be modeled only by extinction
coefficients [Bitterli et al. 2018; Jarabo et al. 2018; Vicini et al. 2021].
Hypothetically, it might be appealing to augment the traditional
volumetric models with more parameters per voxel. However, sim-
ply enhancing the local representation is unlikely to be sufficient
because spatial correlation is inherently a long-range effect, and it is
necessary to model the interaction between voxels. Another attempt
is to record and accumulate the coverage masks of voxels [Bako
et al. 2023]. This is again similar to brute-force supersampling and
requires an impractical amount of memory.

Instead of modeling the visibility by local properties, we propose
to model it as a global function. Recall that we produce the split
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(c) Ours

Helmet

PSNR (dB):

Palm

PSNR (dB): 59.31

(d) Weier [2023]

46.94

(g) Weier [ ]

(e) Reference Ours

2023

56.08 38.82

Fig. 4. We select voxels from each scene, highlighted in (a), and compare the ground truth ABSDFs (b)/(e) to our factored ABSDFs (c)/(f) and the appearance
network fitted results (d)/(g). Each plot contains 8 X 8 2D outgoing slices in the lat-long coordinate system with different incident directions. Our results
achieve better accuracy both qualitatively and quantitatively with lower RMSE. We encourage readers to zoom in for better comparison. Exposure is adjusted

for clarity.

View 3

View 2

CMIIA L MIIA

€ MIIA

(b) Ref.  (c) Ours (d) Naive

Fig. 5. When a scene has orientation-varying material parameters (a), our
method (c) captures the view dependency and matches the reference (b),
while ignoring it leads to incorrect results (d).

visibility integral in Eq. 6. We further separate the visibility along
incident and outgoing directions:

L / V(s 00V (x, 00) dx ~ V(@) V(o).
|Al Ja 25)
N 1

V(w) = m‘/AV(x, w) dx,

where V(o) is the average visibility from points on the surfaces
A inside a voxel through the entire scene along w, and we name
it aggregated interior visibility (AIV). We illustrate how modeling
the global visibility naturally captures spatial correlation by a flat-
land example shown in Fig. 7. We consider the accumulation of
three voxels in two configurations where the results are different
due to different types of inter-voxel correlation. In (a), the first two
voxels are negatively correlated, while in (b), they are positively
correlated. Both configurations have identical per-voxel visibilities
(transmittance) 9; and coverages c; as denoted in (c). The traditional
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(a) Reference (b) Simple (c) Trunc. Ellipsoid

Fig. 6. Compared to the reference, LoD with a simple cube primitive results
in a bloated silhouette and worse, structured artifacts on the red plane. With
the help of the truncated ellipsoid primitive, our method produces a tighter
silhouette and more importantly, artifact free results. We encourage readers

to zoom in to better identify the checkerboard-like artifact.

volumetric model is thus not able to recognize the correlation and
produces an incorrect result by applying the Beer-Lambert law. By
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Fig. 7. Even if voxels have identical local properties, different types of
inter-voxel correlation leads to different accumulation results ((a) and (b)).
While the traditional volumetric model (c) is unable to distinguish these two
cases and produces wrong results, our method accounts for this correlation
naturally by tracking global visibility ((d) and (e)).

explicitly tracking the global ATV V;, our method naturally incorpo-
rates correlation and produces correct accumulation results.

A slightly different matter arises when a scene aggregate is placed
in front of a background or other external objects. In order to cor-
rectly blend the contribution from the scene aggregate and the
external environment, we need to keep track of another type of
aggregated visibility with origins not on surfaces but in the free
space. Let P be a pixel footprint in world space observing the scene
aggregate from direction w. Intuitively, we would like to know the
average visibility from points on P through the entire scene along
. However, caution is needed as we should only count the subset
of P, P*, such that rays originated from P* actually intersect the
scene aggregate primitives, as illustrated in Fig. 8. We define this
aggregated boundary visibility (ABV) as

1

P [u V(x,w) dx. (26)
As the name implies, the ABV term only needs to be defined on the
2D “boundary” that encloses the 3D scene aggregate. The bound
can be any suitable manifold that is reasonably tight such that no
external objects intersect it. In our implementation, the ABV term
is precomputed and stored on the boundary faces of the voxels.
The aggregated visibility functions, AIV and ABV, represent high-
dimensional (5D and 4D, respectively) and all-frequency signals.
Therefore, we choose to represent them in the Haar wavelet ba-
sis. We discuss the details of truncation and further compression
strategies in §7.2.

Vy(w; PT) =

Discussion. In their work, Weier et al. [2023] propose to learn
binary visibility by a visibility network and optimize the binary
threshold by a weighted F-Measure. The network is trained for per-
voxel visibility query given a pair of vertices on the boundary of a
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voxel. During rendering, a ray is partitioned into multiple segments
that intersect different voxels and the visibility of each segment is
queried separately. We argue that this approach is theoretically lim-
ited to handle aggregated inter-voxel correlation due to two reasons.
First, there is no aggregation of visibility at all as the network only
supports point-to-point query without any consideration of filter
footprint. Second, this approach essentially assumes no correlation
between voxels as both training and inference are performed in a
per-voxel manner. As discussed and illustrated in Fig. 7, even when
individual voxels produce identical statistics, different combinations
can still lead to different accumulation visibility. In addition, in their
global illumination rendering, an indirect ray is simply spawned
from the entry point of current voxel on its boundary with the new
scattering direction, which is then used to query the network. This
ignores the fact that scattering could happen anywhere inside the
voxel and lead to a distribution of exiting positions.

6.3 Evaluating Pixel Intensity

We are now ready to present how to evaluate pixel intensity by
accumulating the outgoing radiance of voxels under the far-field
assumption. Assuming a pinhole camera and a box pixel reconstruc-
tion filter, the intensity of a pixel is the integration of the receiving
radiance over the footprint P along its direction wp:

1=+ / Li(xp. ) dy. 27)
Pl Jp

We first consider the case of a single voxel and background as

illustrated in Fig. 8. The value of the integrand in Eq. 27 depends

on whether x;, is “covered” by the truncated ellipsoid primitive B of

the voxel, defined as whether the ray spawned from x, intersects B.

Let P* be the subset of P that is covered, and P~ := P \ P*:

(1) If x, € P, Li(xp, wp) simply evaluates to the background radi-
ance Ly (—wp). Note that L, does not depend on position due to
the far-field assumption.

(2) Otherwise, x, € P* and L;(xp, wp) is a blend between the outgo-
ing radiance of the voxel, L,(~®,) as defined in Eq. 3, and the
background radiance by the primitive coverage c(w,) as defined
in Eq. 24.

Therefore, the pixel intensity becomes

1

I=—
|P|

(/P Lo(~wp)c(wp) + Ly(—wp) (1 — c(awp)) dx, +

/7 Ly (~wp) dxp).
j2

Notice that the integrands do not depend on x;, at all because all
the quantities are aggregated. We can thus collapse the integrals to

(28)

I =%(Lo(—wp)c(wp) + Lp(=0p)(1 = c(ey)) | +
Pl )
[P

where the fraction |P*|/|P| is the pixel coverage in the common
sense (not to be confused with the primitive coverage).

It is straightforward to extend the above formulation to support
multiple voxels. Let {vy} be a list of voxels with truncated ellipsoid
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Fig. 8. (a) P* is the subset of a pixel footprint P that is covered by a primitive
B. A point outside P* is guaranteed not to be covered by the underlying
geometry (green). For a point inside P*, it may (red) or may not (yellow)
be covered by the underlying geometry. After the geometry is abstracted
away, this notion of semi-transparency of B is preserved by the primitive
coverage c(wp). (b) When there are multiple voxels, each primitive covers a
subset of the pixel footprint P} and their union becomes P*: P* = | P}.

primitives {Bg}. The pixel intensity is the sum of the contributions
from all voxels:

[P p* .
I :Zk: ”I;' LE(—wp)ex(wp) + %Lb(—wP)Vb(pr
P (30)
WLb(_wp)’

where P/ is the subset of P covered by By and P* = [ P} . Eq. 30
is similar to Eq. 29 except that the aggregated boundary visibility
Vb(wp) replaces (1 —c(wp)) in the second term. This is because now
we require the average visibility from P* through the entire scene to
reconstruct the silhouette of the scene aggregate and compose the
background. Fig. 9 illustrates several terms in Eq. 30. We note that
the voxel accumulation described by Eq. 30 is order-independent.
Traditionally, ray marching or back-to-front alpha blending is re-
quired for resolving the occlusion (transmittance) between voxels.
However, we have already done so in a correlation-aware manner
as we have precomputed global visibility as aggregated visibility
functions. Therefore, the accumulation during rendering reduces to
a simple summation where each voxel modulates its contribution
by its AIV. This order-independent property allows efficient parallel
implementations.

7 Scene Aggregation Pipeline

In this section, we describe the pipeline of converting an input scene
to our aggregated representation and rendering the scene aggregate
with suitable LoD selection. In particular, we discuss the practical
strategy to compress visibility data, which occupies the majority of
the memory footprint.

7.1 Precomputation

The precomputation first performs discretization of the input scene.
We utilize the sparsity of typical scenes and discretize the input
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Fig. 9. lllustrating several terms that appear in Eq. 30: The per-voxel pixel
coverage (top left), primitive coverage (top right), and the global ABV re-
quired to compose the background (bottom).

scene into a hierarchy consisting of multiple levels of sparse grids.

Each level doubles the spatial resolution of the one in the previous

level. Due to the sparsity, the actual growth rate of non-empty voxel

count is only quadratic instead of cubic as a function of resolution.

We report the sparsity of all scenes used in Table 2. In our current

implementation, each level is precomputed separately. However, it

is possible to cache and reuse collected data across levels, which we
leave for future optimization.

For each level, the precomputation involves two stages. The first
stage precomputes the “interior” of the scene. For each non-empty
voxel, we need to acquire the following information:

(1) The total surface area |A| within the voxel (for normalization).

(2) The first two moments of roughness .

(3) Directional moments of material parameters ¢, f, and f°
(Eq. 23) with angular resolution d.

(4) The surface normal distribution py(n) function represented by
one or a mixture of SGGX distributions with k components
(Eq. 8).

(5) The ellipsoid of the truncated ellipsoid primitive as an affine
transform.

(6) Wavelet basis coefficients for the aggregated visibility (Eq. 25
and Eq. 26).

Apart from the surface area which can be computed analytically,
the rest of the information is estimated via Monte Carlo sampling
and ray tracing. We uniformly sample the surfaces within the voxel.
The sample budget is a tunable parameter. It should not be too low
to avoid noisy estimation. As smaller voxels contain fewer surfaces,
we find that one suitable strategy is to allocate sample budget to
be inversely proportional to the square of the resolution of current
level. This strategy also helps balance the computation cost across
different levels. Each surface sample includes position, normal, and
material parameters looked up from texture maps. We then proceed
to estimate each type of information respectively:

Roughness Moments. These are straightforward to compute by
moving averages.

Directional Moments. An easy way to estimate directional mo-
ments is to simply evaluate Eq. 23 at the center direction of each
angular grid cell. However, this is prone to aliasing for highly glossy



surface samples. Instead, for each surface sample, we warp a low dis-
crepancy sequence to S? by the weight kernel g. Then we compute
the numerator and the denominator of Eq. 23 for each sequence ele-
ment and splat them to separate angular grids. We accumulate the
contribution for all surface samples and perform the normalization
(division) at the end.

Surface Normal Distribution. For a single SGGX component, we
follow the estimation method by Heitz et al. [2015]. For a mixture,
we perform a K-means clustering on the surface normal samples
and fit each cluster as one component, similar to the process by
Zhao et al. [2016]. The initial cluster centers are selected to be away
from each other. Furthermore, to avoid undesirable homogeneous
clusters, we repeat the fitting for 1 to a maximum of k components
and choose the result that yields the highest likelihood. In practice,
we find k < 4 are sufficient for most cases.

Truncated Ellipsoid Primitive. Finding the optimal minimum vol-
ume enclosing ellipsoid is a semidefinite programming problem
that can be costly to solve [Todd 2016]. Instead, we compute the
approximate minimum bounding ellipsoid for a voxel with a simple
heuristic. We first perform Principal Component Analysis (PCA) on
the sampled positions and transform them to the unit cube by the
eigenvectors. We then compute a bounding sphere and transform it
back to world space to obtain a bounding ellipsoid. The resulting
ellipsoid is tight enough for our purposes.

Aggregated Visibility Coefficients. We trace visibility rays with
uniformly sampled directions starting from each surface sample
and project the results to the Haar wavelet basis. We use the equal-
area mapping [Clarberg 2008] to parameterize the spherical domain.
Again, the visibility sample rate should not be too low to avoid noisy
estimation. However, when there are sufficient surface samples, the
cost of tracing visibility can be amortized. In practice, we find 16-64
rays per surface sample is enough. In Fig. 10, we visualize the ATV
terms and compare our compressed terms to the references.

The second stage of the precomputation handles the ABV term.
Recall that this term is only defined on the boundary of the entire
scene. Therefore, after scene discretization, we precompute it for
the boundary faces of the voxels. The list of boundary faces can be
determined by one simple flood fill iteration. For each boundary
face, we consider all directions in its inward facing hemisphere. For
each direction, we cast visibility rays with origin uniformly sampled
on the face to estimate the average visibility. We use concentric
mapping [Shirley and Chiu 1997] to parameterize the hemispherical
domain and obtain a 2D visibility map. The map is then projected to
the Haar wavelet basis. The ABV contains a high-frequency signal
as it is responsible for reconstructing the silhouette of the scene.
In practice, we choose a relatively high angular resolution of 642
for accurate reconstruction. Fig. 11 shows the accurate coverage
reconstruction with our ABV term.

7.2 Compression Strategy for Visibility Data

In order to preserve all-frequency information, we represent both
types of visibility: the aggregated interior visibility (AIV), and the
aggregated boundary visibility (ABV) by wavelet coefficients. Typi-
cally, we are able to perform nonlinear approximation and truncate
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Fig. 10. Visualizing the AIV terms of selected voxels. Each spherical plot
is parameterized by the equal-area mapping [Clarberg 2008]. The wavelet-
based projection and compression is able to preserve the high-frequency
visibility.

LI 30N Sk

LIRS

Fig. 11. Visualizing coverage for all five scenes in Fig. 13. Our ABV term
accurately reconstructs partial coverage (transmittance) for different types
of scenes after compression.

a large number of coefficients while preserving good quality. How-
ever, this is not enough when the angular resolution is high. We
typically use 322 resolution for ATV and 642 resolution for ABV as
it is responsible for reconstructing a sharp silhouette. Even with a
typical 90% to 95% truncation rate, the memory cost can still be high
as the spatial resolution grows. Therefore, we further apply Clus-
tered Principal Component Analysis (CPCA), which is proven to be
effective at compressing basis coefficients [Liu et al. 2004; Sloan et al.
2003]. One performance issue for CPCA is that PCA has cubic time
complexity and quadratic space complexity with respect to input
data matrix size. Thus, it becomes impractical to directly apply it to
a fine LoD level. We apply a simple heuristic by dividing a level into
individual blocks of no more than 64* and applying CPCA to each
block separately. This works well in practice, since a large extent of
spatial locality is still preserved in each block that can be exploited
by CPCA. It is possible to develop more sophisticated methods to
scale CPCA or compress coefficients which is left for future work.

In Fig. 12, we validate the effectiveness of our current CPCA-
based compression. For this Colortree scene, we compress AIV to
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(a) PT Ref. (High Res.) (b) No CPCA (c) ABV (d) ABV+AIV
Fig. 12. We apply CPCA to compress both the aggregated boundary (ABV)
and interior visibility (AlIV) data. In this example, we reach a ~ 4X compres-

sion ratio while having little impact on the visual quality.

30 clusters each with 10 representatives and ABV to 30 clusters
each with 60 representatives. Each representative still goes through
coeflicient truncation after CPCA. Overall, we gain an extra ~ 4x
compression ratio without negatively impacting the visual quality.

7.3 Rendering with LoD Selection

The rendering of our scene aggregate follows Eq. 30. For each pixel,
we need to determine the list of voxels {vy} whose primitives {By}
cover the pixel footprint P and compute the pixel coverage |P|/|P|
for each k. In our current implementation, we choose to compute
it by multi-sampled ray casting. Each ray traverses the discretized
scene by a digital differential analyzer (DDA). For each encoun-
tered voxel, we compute and accumulate its outgoing radiance L¥
with the primitive coverage c, (Eq. 24). Note that the traversal can
be in arbitrary order, which enables possible rasterization-based
approaches.

To utilize the different LoDs included in the hierarchy, we can
enhance the above procedure by associating each ray with a cone
aperture that covers the pixel footprint, akin to ray differentials
[Igehy 1999]. During the traversal of each ray, we determine the
LoD level by the cross section size of the cone. In our current imple-
mentation, we switch to a coarser LoD only at the boundary of the
coarser voxels for efficiency. A continuous LoD blending scheme
is possible but more costly. Algo. 1 provides pseudocode for the
rendering procedure.

To enable next event estimation (NEE) with multiple importance
sampling (Algo. 1, line 15), we develop a straightforward importance
sampling routine for our factored ABSDF fnovis (Eq. 7) as follows:
(1) Pick one component between the specular and diffuse compo-

nents. This can be done simply by uniform sampling.

(2) For the specular component, we first pick one convolved lobe
from Eq. 8 based on the lobe weights w;. Then we sample the
corresponding SGGX distribution.

(3) For the diffuse component, note that we cannot directly sample
a convolved lobe from Eq. 14 because k cannot be determined
without w;. Therefore, we resort to a simple strategy by assum-
ing a fixed x during importance sampling. The rest is similar
to the specular case: we pick one convolved lobe (but with the
fixed k) and sample the corresponding SGGX distribution.
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Algorithm 1 Rendering a scene aggregate S given a cone with
center ray r and aperture 6.

1: function RENDER(S, r, 0)

2 t, tmax = intersect(S.bound, r)

3 s = base voxel size of S

4: w = direction of r

5. I=0,V,=1

6 while t < t.c do

7 level = floor(log2(tan(0.5 - 6)-t/s))

8 vk, At = DDAToNextVoxel(r, t, S[level].grid)
9 if v is on the boundary of S then

10: V, = EvaluateABV(t, )

11 end if

12: if intersect(Bg, r) then

13: L,=0

14: fori=1tomdo

15: L, += (1/m) - MISDirectLighting(v)

16: > incident AIV by V; = EvaluateAIV (v, ;)
17: end for

18: v, = Evah}ateAIV(vk, -w)

19: I+=L,-V,- |Ak| / IBk|w

20: > See supplemental document
21: end if

22: t+= At

23: end while

24: Ly = EvaluateBackground(—w)

25: I+= f,b . Vb

26: return [

27: end function

The corresponding PDF computation is also straightforward. The
sample budget for NEE is decoupled from the ray casting sample
budget.

8 Results and Discussion

In this section, we provide rendering results produced by our scene
aggregation pipeline and detailed comparison to existing techniques.
We implement our method in a custom CPU renderer using Embree
[Wald et al. 2014] as the ray tracing backend for precomputation
and reference generation. The sparse hierarchical data structure is
implemented using OpenVDB/NanoVDB [Museth 2013, 2021]. All
timings are measured on a desktop machine with an Intel i9-13900K
CPU and 64 GB of main memory. Unless otherwise stated, we use
path-traced images with direct illumination as reference.

We compare our method to three current state-of-the-art meth-
ods: the hybrid mesh-volume LoD method (HybridLoD) [Loubet and
Neyret 2017], the non-exponential transmittance volumetric model
(NonExp) [Vicini et al. 2021], and the deep appearance prefiltering
(DAP) [Bako et al. 2023]. For HybridLoD, we use the official imple-
mentation provided by authors with modifications for asset loading
purposes. For NonExp, we re-implemented the method based on the
paper as the source code is not available. For DAP, we used the au-
thors’ pre-trained results as training is prohibitively expensive and
requires a GPU cluster. We provide different images from references



and provide root mean squared error (RMSE) to evaluate the quality
of each method. In addition, we provide a supplementary video
with varying magnification levels, camera rotation, and lighting
conditions to demonstrate the temporal stability of our method.

Rendering Quality Comparison. In Fig. 13, we compare our method
to HybridLoD and NonExp on a set of scenes with varying geometric
and material characteristics. For each scene, we show the rendered
results using 2 different LoD scales, 32° and 64*. The image resolu-
tions are 322 and 642, chosen such that a voxel roughly projects to
the footprint of a pixel. High resolution references are provided to
better visualize the setup. The Helmet scene has relatively low geo-
metric complexity but it consists of large specular surfaces which
are traditionally challenging for LoD methods. The Chandelier scene
has intricate geometric structure with varying degree of curvature
that produces anisotropic highlights. The Tower scene features orga-
nized thin structures that lead to correlated partial occlusion. Finally,
the Palm and the Oleander scene have larger complexity with both
unstructured (leaves) and structured (trunk) geometry.

For all scenes, our results achieve superior quality and produce
closer matches to references, as can be verified by the difference
images and the RMSE errors. HybridLoD tends to produce bloated,
over transparent results, which is especially noticeable at coarser
LoD resolution. This could be due to both misclassification (too
much volume) and the neglect of correlation. Moreover, the mesh
simplification process could undesirably alter the curvature of the
original geometry, causing loss of highlights (Helmet and Chande-
lier). NonExp achieves better quality than HybridLoD in general,
but still suffers from several issues. The transmittance optimization
accounts for some correlation but is usually not perfect, as shown
in the Chandelier renders (too leaky) and the Palm renders (too
opaque). The method ignores the complexity in material and results
in glossy appearance mismatch (Helmet and Chandelier). Ultimately,
the empirical exponential-linear blending model is unlikely to sat-
isty all constraints required to match transmittance for all directions.
In addition, we find that it is highly sensitive to the empirical ray
offset parameter as a different value drastically alters brightness.
We follow the authors’ suggestion and offset scattered rays by one
voxel for all results.

Comparison to DAP. In Fig. 14, we provide a separate compari-
son to DAP as we only use their pretrained asset. The Oak scene
presents two difficulties including the glinty appearance from the
highly glossy material and the hard shadow cast by a directional
light. Our method is able to capture the highlight accurately, but
fails to reconstruct the hard shadow perfectly due to the coefficient
truncation and compression error. This can be alleviated with more
conservative truncation/compression parameters at the cost of a
larger memory footprint. Overall, our method is able to reach a
comparable visual quality (slightly better in terms of RMSE). We em-
phasize that our method only requires a fraction of precomputation
time, memory cost, and rendering time to reach such quality.

Complex Scenes. We showcase the practicality of our method by
demonstrating results on significantly more complex scenes. Each
scene shown in this part features a collection of assets with multiple
geometric parts and materials. We compare our results to references
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but not to other methods, because they require either non-trivial
engineering effort or excessive precomputation budget to support
assets at this scale.

The Coral Reef scene in Fig. 1 includes a variety of geometry (flat
surfaces and unstructured details) and materials (glossy and diffuse).
The environment light features a dynamic range of 80,000:1 and
produces strong highlights on glossy surfaces. Despite the challeng-
ing configuration, our results accurately preserve the appearance
across different scales. The insets show how our method deals with
a particularly challenging part with numerous thin glossy branches.
At the coarsest scale, even our multi-lobe NDF does not have suffi-
cient angular resolution to resolve all the highlights, resulting in a
slightly darker look. However, this is alleviated at finer scales.

The Forest scene in Fig. 16 features the largest single-object geo-
metric complexity. It has 16.2 million unique triangles and 175.2
million after instancing. Our results remain close to references at
the three LoD scales shown (128, 256°, and 512°). We note that
the memory cost of our method is agnostic to whether or not the
original scene contains instanced geometry.

Finally, our method supports assembly of multiple aggregated ob-
jects and instancing for even larger scenes. The Metropolis cityscape
in Fig. 1 is composed of 82 unique aggregated objects and 270 in-
stances. Each instance selects its level based on its screen-space pro-
jection size so that content far away can be rendered with coarser
LoDs accordingly (Fig. 1, right). Different instances are treated as
uncorrelated and ABVs are used to compute the partial occlusion
between them. This is where the LoD approach truly shines as our
representation provides nearly an order-of-magnitude of memory
saving. In fact, we are not even able to generate reference for this
scene in our testing environment: The original scene costs 46.9 GB
alone and when taking into account the auxiliary data structures
such as mipmaps and the BVH, the total memory would approach
out-of-core rendering territory. Our representation only costs 5.33
GB and Fig. 1 takes 1300 seconds to render at 1280 x 540 resolution
with 2048 samples per pixel.

Performance. In Table 2, we report the configuration for all scenes,
including both the original version and our representation. It is clear
that all scenes have a large degree of sparsity. As expected, the mem-
ory footprint of our representation is largely independent of the
original scene complexity. While our method cannot beat the ex-
plicit representation for small scenes, the asymptotical benefit is
evident for larger scenes. Recall that the memory footprint scales
quadratically with respect to LoD resolution. If a model only occu-
pies a small portion of the rendered image, then only a coarser LoD
level with much smaller memory is needed. It is possible to further
reduce the memory footprint with a more optimized implementa-
tion, e.g., by quantizing the stored data. GPU ray tracing is likely to
reduce the precomputation time by an order of magnitude.

In Table 3, we compare the memory consumption and rendering
times required by our method, HybridLoD, and NonExp. At a rel-
atively modest resolution of 643, all methods reduce the memory
consumption, especially for more complicated models. However, our
method does require more memory than HybridLoD and NonExp
mainly due to the high-dimensional aggregated visibility data even
after compression. Performance wise, none of the methods show
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Table 2. Scene Configuration. For all scenes: Surface NDF mixture component count is set to k < 4; AlV is recorded at 322 angular resolution; ABV is recorded
at 64% angular resolution. At most top 10% basis coefficients are kept. More are truncated as long as the reconstruction preserves more than 95% accuracy.
*Instanced triangle count. This scene is composed of instances of multiple aggregated objects. We only report the largest object.

Scene Original Ours
#Tris | Memory | Max Res. | Occupancy | Total Mem. | Precomp. Time
Helmet 15K 7.7 MB 2563 2.36% 155.1 MB 1583 sec
Chandelier 106K | 11.7 MB 2563 1.39% 180.6 MB 748 sec
Tower 453K 45.7 MB 256° 1.66% 255.8 MB 1108 sec
Palm 2.2M | 349.6 MB 2563 1.25% 216.2 MB 1345 sec
Oleander 2.7M | 398.8 MB 2563 3.71% 327.6 MB 3537 sec
Coral Reef 4.1M | 513.0 MB 2563 3.18% 209.5 MB 1624 sec
Forest | 16.2M (*175.2M) 2.5GB 5123 2.86% 1.06 GB 16064 sec
Metropolis | 88.6M (*301.8M) | 46.9 GB 256° 77.01% 5.33 GB 18254 sec

Table 3. Statistics of the rendering results in Fig. 13. Memory consumption
and render times are measured using 64> LoD resolution and 1024 samples

per pixel for all methods.

HybridLoD | NonExp
Helmet PT Ref. | Ours | [Loubet and | [Vicini et al.
Neyret 2017] | 2021]
Mem. (MB) 77 97 5.1 1.0
Time (sec) 1.37 1.68 23.78 57.36
RMSE — | 0.158 0.302 0.238
Chandelier | PT Ref. | Ours | HybridLoD NonExp
Mem. (MB) 117 | 64 6.6 05
Time (sec) 146 | 174 32.33 51.08
RMSE — | 0.075 0.112 0.099
Tower PT Ref. | Ours | HybridLoD NonExp
Mem. (MB) 457 96 43 0.7
Time (sec) 1.66 | 1.20 19.72 37.13
RMSE — | 0.022 0.050 0.038
Palm PT Ref. | Ours | HybridLoD NonExp
Mem. (MB) 3496 | 7.3 4.0 05
Time (sec) 2.93 1.81 30.50 56.79
RMSE — | 0.024 0.109 0.098
Oleander PT Ref. | Ours | HybridLoD NonExp
Mem. (MB) 3988 | 12.8 41 14
Time (sec) 4.56 5.12 84.78 192.39
RMSE — | 0.027 0.090 0.045

significant advantage over the PT baseline at equal samples. In fact,
HybridLoD and NonExp are significantly slower, likely due to the
complexity of (nested) ray marching or sampling. We note that the
baseline is backed by highly optimized ray tracing kernels from
Embree, and our CPU re-implementation of NonExp is relatively
unoptimized. Our method is much more comparable to the baseline,
as it is simpler with precomputed aggregated visibility (Eq. 30). The
equal-sample comparison could be unfavorable to our and other LoD
methods because they are already prefiltered and should require
fewer samples to reach the same or similar quality. In the following,
we assess how our method improves efficiency under equal time.
Thanks to appearance aggregation, we are able to render complex
scenes efficiently. Fig. 17 shows equal-time rendering comparison
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for the Forest scene. The performance improvement comes from two
aspects: First, we avoid spending a large number of samples to trace
explicit geometry as our representation is already anti-aliased. This
allows us to perform splitting and allocate more samples for lighting
(Algo. 1, line 14). Moreover, we do not need to trace shadow rays
either, since the visibility information is readily available from the
precomputed AIV. The variance reduction is modest, as ray tracing
is highly optimized by Embree. Again, our rendering speed can be
further improved with a GPU implementation.

To further investigate the effect of anti-aliasing and appearance fil-
tering provided by our representation, we conduct an equal-sample
comparison between our method and the PT baseline in Fig. 18.
Only a single directional light is used to exclude the variance from
light sampling. Our method provides reduction in variance, as it
prefilters both appearance and visibility, the latter benefiting both
anti-aliasing and shadows. This is especially noticeable at coarser
resolutions, because PT would require many more samples to re-
solve the details that fall within a pixel footprint, while our method
simply switches to a coarser LoD level. With a few samples per pixel
our method can already produce relatively clean renders, while PT
struggles with excessive noise. Our method is fundamentally biased.
As more samples are taken, our results quickly approach noise-free,
and the main source of error switches to bias, as expected.

Ablation Study. In Table 4 and Fig. 19, we conduct an ablation
study on the impact of parameters to accuracy and cost. For each
model, we precompute it with the “maximum” configuration to serve
as the control, where up to 4 surface NDF lobes are allowed and
no compression is applied at all. We then vary each parameter and
assess its effect on rendering quality, memory requirement, and time
compared to the control. The benefit of using multiple NDF lobes
is more prominent in the Chandelier scene to capture the glossy
base material together with curved surfaces; it is not obvious in the
more diffuse Oleander scene. For both types of aggregated visibility,
10% coeflicient truncation only introduces barely recognizable error,
while 1% truncation results in visible inaccuracy. Finally, by keeping
only 1 CPCA representative, CPCA is reduced to simple vector
quantization and approximates per-cluster subspaces poorly. The
visibility data is high dimensional and thus compression parameters
greatly affect the final memory requirement. All parameters affect
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Fig. 13. Rendering results by our and existing methods on a variety of scenes. All images are rendered using 1024 samples per pixel. Each result is compared
to the corresponding reference and the difference image is displayed on the side with RMSE provided. Our results achieve superior quality for all five scenes.
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Table 4. Ablation study analyzing the impact of parameters on appearance and cost. Given the “maximum” configuration with up to 4 surface NDF lobes and

no compression, we change each parameter and show how it affects accuracy, memory requirement, and render time. Please refer to Fig. 19 for rendered

results.
Scene Maximum | 1 NDF Lobe 10% AIV 1% AIV 10% ABV 1% ABV | 1 CPCA Rep.
Chandelier | Mem- (MB) 70.1 | 69.5 (0.99x) | 48.9 (0.70X) | 46.8 (0.67x) | 31.2 (0.44x) | 27.3 (0.39X) 27.2 (0.37x)
613 Time (sec) 1.91 | 1.87(0.98x) | 1.91 (1.00x) | 1.62 (0.85%) | 1.81(0.95%) | 1.78 (0.93x) 1.85 (0.97x)
RMSE 0.070 0.077 0.070 0.081 0.071 0.101 0.078
Chandelier | Time (sec) 2.86 | 2.72(0.95%) | 2.83(0.99x) | 2.40 (0.84x) | 2.77 (0.97X) | 2.72 (0.95%) 2.63 (0.92X)
(alt. view) | RMSE 0.242 0.322 0.247 0.290 0.246 0.266 0.251
Oleander | Mem. (MB) 125.8 | 124.5 (0.99%) | 66.6 (0.53x) | 60.7 (0.48%) | 154.7 (0.62X) | 77.4 (0.58x) 71.2 (0.57X)
Pyt Time (sec) 513 | 5.03(0.98%) | 5.13 (1.00x) | 4.57 (0.89x) | 5.08 (0.99%) | 5.18 (1.01x) 5.14 (1.00%)
RMSE 0.025 0.025 0.026 0.028 0.032 0.116 0.053
Oleander | Time (sec) 8.06 | 7.90(0.98%) | 7.93(0.98x) | 6.77 (0.84x) | 7.66 (0.95X) | 7.90 (0.98X) 7.81 (0.97x)
(alt. view) | RMSE 0.046 0.046 0.047 0.047 0.055 0.088 0.070

0.25| YN

0.0

3
(a) PT Reference (c) DAP (256°)

[Bako et al. 2023]

(b) Ours (256%)

Fig. 14. We compare our method to DAP with their pretrained Oak scene.
Despite the small imperfection of the hard shadow cast on the tree trunk
due to visibility coefficient truncation and compression, our result overall
reaches similar visual quality.

the shading cost, but the cost is minor compared to voxel traversal
and intersection tests.

Limitations. Our method has several limitations that could serve
as fruitful topics for future research. As prefaced, so far we have
been focusing on direct illumination. For a scene aggregate to sup-
port global illumination, multiple scattering between different parts
of the scene should be modeled. This brings new challenges as dis-
cretizing and aggregating individual regions will inevitably lose the
information about how different regions interact with each other.
One possible approach is to precompute and aggregate the entire
transport from the external environment to a given region. The
definition of ABSDF should be extended accordingly in this case.
Alternatively, it is possible to only aggregate multiple scattering
within a voxel based on results from path tracing within a voxel, as
done similarly by Weier et al. [2023]. However, it remains unclear
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how to handle long-range correlation between arbitrary pairs of
voxels.

Two more limitations stem from the separate approximations
made in Eq. 6 and Eq. 25. Eq. 6 assumes independence between
visibility and material in a single voxel which could lead to certain
artifacts as illustrated in Fig. 20. However, this is alleviated as the
spatial resolution grows, since the correlated parts are more likely
to be grouped into different voxels. Eq. 25 assumes independence
between visibility along two directions. This could lead to incorrect
occlusion when, for example, the camera and the light source are col-
located. To the best of our knowledge, compactly representing the
general 4D correlated bidirectional visibility remains an open prob-
lem for LoD techniques. In practice, we find that this assumption
rarely causes noticeable artifacts.

It would be desirable to further support material models beyond
the Disney BRDF. For example, foliage often exhibits non-negligible
subsurface scattering effects. One simple extension to our current
ABSDF factorization could be to model an extra diffuse transmission
component.

Finally, it is worth investigating how to combine our method with
differentiable rendering and gradient-based optimization. One strat-
egy is to use our method as initialization for further optimization.
This could also open up possibilities for potential inverse rendering
applications.

9 Conclusion

We present an accurate scene appearance aggregation method for
LoD rendering. Our method is based on a novel formulation for
far-field scene aggregation with the definition of ABSDF, which
captures the aggregated appearance of all surfaces within a volume.
We develop a closed-form factorization of the ABSDF that supports
all-frequency and view-dependent effects with handy evaluation
and sampling procedures. Our representation naturally accounts for
long-range correlation by recording two types of global visibility,
the aggregated interior visibility and the aggregated boundary visi-
bility. Our truncated ellipsoid primitive improves the preservation
of local correlation compared to the naive cubic primitive. We have
demonstrated the accuracy of our method on a variety of scenes
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Fig. 15. Our method captures the complex visual appearance of the Coral Reef scene that consists of a variety of geometry and materials. We show (a) the
renders with our representation at 3 scales (64°, 1283, and 256%) and compare them to (b) path-traced (PT) references. Image resolutions are chosen such that
one voxel approximately projects to the footprint of a single pixel (1282, 2562, and 5122). We highlight a challenging part that features partial transparency and

a glossy material on the right.

with different geometric and material characteristics and its scalabil-
ity to large, complex scenes. Our results achieve higher quality than
those from state-of-the-art LoD techniques. While our implemen-
tation is far from optimized, we can already show the asymptotic
advantages of our representation in terms of memory footprint and
rendering speed compared to the original representation. We believe
our work is highly relevant to improving the scalability of physically
based rendering, enabling the generation of richer, more realistic
3D content.
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Fig. 18. Equal-sample comparison using the Coral Reef and the Forest scene with a single directional light. For each scene and resolution ((b) - (d), (f) - (h)),
our method (top insets) produces noticeably cleaner results than the PT baselines (bottom insets) with equal samples. Convergence plots are provided in (a)/(e).
Here, we focus on variance and calculate the errors between non-converged renders using our method and converged renders also using our method (same
LoD level), not the converged PT renders. Please refer to other results for analysis regarding accuracy.
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